Curriculum Vitae

Kohei Suenaga

October 1, 2013

1 Personal Information

Name: Kohei Suenaga

Nationality: Japan

Address Bldg. Eng. 10, Yoshida Honmachi, Sakyo-ku,
Kyoto, Kyoto, 606-8501, Japan

Phone +81-75-753-5968

Email Address: ksuenaga®@kuis.kyoto-u.ac.jp

Homepage: http://www.fos.kuis.kyoto-u.ac. jp/~ksuenaga/

2 Education

2008 Ph.D in Information Science and Technology from the University of Tokyo, JAPAN
2005 M.S. in Information Science and Technology from the University of Tokyo, JAPAN
2003 B.S. from the University of Tokyo, JAPAN

3 Employment History

1. April 2003 — September 2005 : Research Assistant of Prof. Akinori
Yonezawa in the University of Tokyo

2. October 2005 — March 2007 : Research Assistant of Prof. Naoki Kobayashi
in Tohoku University

3. April 2007 — March 2008 : Research Fellow of the Japan Society for the
Promotion of Science (DC2)

4. April 2008 — March 2009 : Research Fellow of the Japan Society for the
Promotion of Science (PD)

5. April 2009 — March 2010 : Researcher in Tokyo Research Laboratory, IBM
Japan

6. April 2010 — January 2011 : Post doctoral researcher at Department of
Informatics, Faculdade de Ciéncias da Universidade de Lisboa



10.

. February 2011 — March 2011 : Post doctoral researcher at Graduate School

of Informatics, Kyoto University

. April 2011 — March 2012 : Research Fellow of the Japan Society for the

Promotion of Science (PD)

. April 2012 — September 2013: Assistant Professor at Hakubi Center for

Advanced Research, Kyoto University

October 2013 — : Associate Professor at Graduate School of Informatics,
Kyoto University

Research Experience

. 2011-Present: Hybrid System Modeling and Verification Based on

Infinitesimal Programming

We add, to the common combination of a WHILE-language and a Hoare-
style program logic, a constant dt that represents an infinitesimal (i.e.
infinitely small) value. The outcome is a framework for modeling and
verification of hybrid systems: hybrid systems exhibit both continuous
and discrete dynamics and getting them right is a pressing challenge. We
rigorously define the semantics of programs in the language of nonstandard
analysis, on the basis of which the program logic is shown to be sound and
relatively complete.

We have also implemented a prototype verifier based on our methodology
and confirmed that it can verify several relevant examples including one
with Zeno behaviors. We are currently extending the prototype so that it
can deal with more examples.

As another direction, we have exploited the apparent similarity between
(discrete-time) stream processing and (continuous-time) signal process-
ing and transfer a deductive verification framework for the former to the
latter. Our development is based on rigorous semantics that relies on non-
standard analysis (NSA). Specifically, we start with a discrete framework
consisting of a Lustre-like stream processing language, its Kahn-style fixed
point semantics, and a program logic (in the form of a type system) for
partial correctness guarantees. This stream framework is transferred as
it is to one for hyperstreamsstreams of streams, that typically arise from
sampling (continuous-time) signals with progressively small intervalsvia
the logical infrastructure of NSA. Under a certain continuity assumption
we identify hyperstreams with signals; our final outcome thus obtained is
a deductive verification framework of signals. In it one verifies properties
of signals using the (conventionally discrete) proof principles, like fixed
point induction.

References: Joint work with Ichiro Hasuo and Hiroyoshi Sekine [?,?,?].



2. 2008—Present: Fractional Ownerships for Safe Resource Dealloca-
tion

We have proposed a type system for a programming language with memory
allocation/deallocation primitives, which prevents memory-related errors
such as double-frees and memory leaks. The main idea is to augment
pointer types with fractional ownerships, which express both capabilities
and obligations to access or deallocate memory cells. By assigning an own-
ership to each pointer type constructor (rather than to a variable), our
type system can properly reason about list/tree-manipulating programs.
Furthermore, thanks to the use of fractions as ownerships, the type sys-
tem admits a polynomial-time type inference algorithm, which serves as
an algorithm for automatic verification of lack of memory-related errors.
A prototype verifier FreeSafeTy has been implemented and tested for C
programs.

We have also extended the framework to concurrency. The resulting frame-
work now guarantees safe resource deallocation. Here, by resource, we
mean locks and thread IDs as well as memory cells. We use the same idea
as the previous type system for safe memory deallocation: fractional own-
erships for pointer-type constructors. However, we need to deal with own-
ership transfer by synchronization with locks and fork/join in the world
with concurrency. To this end, we augment lock types and thread ID
types with procurable type environments. A procurable type environment
describes the ownerships granted by using locks and thread IDs. The type
system guarantees that ownership transfer by synchronization is done ap-
propriately and guarantees that resource leak does not occur. We also
designed type inference algorithm. As a side-product of the use of frac-
tional ownerships, the new type system also guarantees race-freedom.

The current verifier requires a user to explicitly pass ownerships around
pointers by assertions if necessary. We are now developing a method to
automatically insert appropriate assertions into programs.

References: Joint work with Naoki Kobayashi, Atsushi Igarashi and Ryota
Fukuda [?,?].

3. 2006-2009: Type-Based Deadlock-Freedom Verification for Con-
current Programs with Interrupts

The aim of this research is to establish a method for verification of certain
critical properties (such as deadlock- and race-freedom) of real-world soft-
ware that is written as concurrent programs. As a first step towards the
goal, we have formalized a concurrent calculus equipped with primitives for
concurrency and interrupts and proposed a type system that guarantees
deadlock-freedom in the presence of interrupts [?]. To our knowledge, this
had been the unique type system for deadlock-freedom that can deal with
both concurrency and interruption. We have also designed a deadlock-
freedom verification method for programs with non-block-structured lock



primitives and mutable references [?]. Type-based deadlock-freedom ver-
ification for programs with those two features had not been developed
yet until [?]. In my Ph.D thesis [?], we have merged those two methods
to a type-based verification for concurrent programs with (1) non-block-
structured lock primitives (2) mutable references and (3) interrupts.

We have concurrently investigated methods for user-friendly presentation
of type errors based on type error slicing. The main idea is to associate
locations in an input program with each type constraint. If a constraint
set is unsatisfiable, our tool calculates an unsatisfiable core (a subset of
the original constraint set that is unsatisfiable) and extracts the locations
that are involved in the unsatsfiable core. Then, the tool slices the input
program using the extracted locations. We applied this idea to the type
system for deadlock and race detection for m-calculus [?,?].

References: Joint work with Naoki Kobayashi and Eri limura [?,7?,7?,7?].

. 2005-2006: Resource Usage Analysis for the m-calculus

We have proposed a type-based resource usage analysis for the m-calculus
extended with resource creation/access primitives. The goal of the re-
source usage analysis is to statically check that a program accesses re-
sources such as files and memory in a valid manner. Our type system is
an extension of previous behavioral type systems for the pi-calculus, and
can guarantee the safety property that no invalid access is performed, as
well as the property that necessary accesses (such as the close operation
for a file) are eventually performed unless the program diverges. A sound
type inference algorithm for the type system is also developed to free the
programmer from the burden of writing complex type annotations. Based
on the algorithm, we have implemented a prototype resource usage ana-
lyzer for the m-calculus. To our knowledge, ours is the first type-based
resource usage analysis that deals with an expressive concurrent language
like the m-calculus.

References: Joint work with Naoki Kobayashi and Lucian Wischik [?, ?].

. 2003-2010 : Translation of Tree-Processing Programs into Stream-
Processing Programs Based on Ordered Linear Types

There are two ways to write a program for manipulating tree-structured
data such as XML documents and S-expressions: One is to write a tree-
processing program focusing on the logical structure of the data and the
other is to write a stream-processing program focusing on the physical
structure. While tree-processing programs are easier to write than stream-
processing programs, tree-processing programs are less efficient in memory
usage since they use trees as intermediate data.

The goal of this study is to establish a method for automatically trans-
lating a tree-processing program to a stream-processing one in order to



take the best of both worlds. To achieve this goal, we first introduced a
statically-typed language that accepts only tree-processing programs that
traverse input trees from left to right in the depth-first order, and show an
algorithm for translating well-typed tree-processing programs into stream-
processing programs [?, 7, ?]. We then remove the restriction on the access
order by extending the language with primitives for selectively buffering
part of trees on memory.

With the extended language, programmers can write arbitrary tree-processing,
but inserting the buffering primitives manually is sometimes tedious. We
therefore also develop a type-based algorithm that inputs arbitrary tree-
processing programs and automatically inserts the buffering primitives [?].

Though the extended framework enables every simply-typed tree-processing
program to be translated into a stream-processing program, the resulting
programs sometimes do not become efficient on memory consumption as
they should be. This is mainly because, in actual programs, many trees
that are accessed twice or more (thus are buffered in the type system
in [?,7,7,?]) but only a part of such trees are actually used. To solve
this problem, we extend the framework above by introducing ordered,
non-linear types in addition to ordered linear types [?,?]. A tree with an
ordered, non-linear type is constructed lazily on memory, thus if a part of
the tree is not used, it can be discarded without consuming memory space.
The resulting transformation framework reduces the redundant buffering,
generating more efficient stream-processing programs.

References: Joint work with Naoki Kobayashi, Koichi Kodama, Ryosuke
Sato and Akinori Yonezawa [?,?,?,7,7,7,7].

. 2002-2003: The Interface Definition Language for Fail-Safe C

Fail-Safe C is a safe implementation of full ANSI-C. It uses its own in-
ternal data representations such as 2-word pointers and memory blocks
with headers describing their contents. Because of this, calls to external
functions compiled by conventional compilers require conversion of data
representations. Moreover, for safety, many of those functions need addi-
tional checks on their arguments and return values. This paper presents a
method of semi-automatically generating a wrapper doing such work. Our
approach is to develop an Interface Definition Language to describe what
the wrappers have to do before and after function calls. Our language is
based on CamlIDL, which was developed for a similar purpose between
Objective Caml and C. Our IDL processor generates code by using the
types and attributes of functions. The attributes are additional informa-
tion describing properties which cannot be expressed only by ordinary
types, such as whether a pointer can be NULL, what range of memory can
be safely accessed via a pointer, etc. We examined Linux system calls as
test cases and designed a set of attributes required for generating their
wrapper.



References: Joint work with Yutaka Oiwa, Eijiro Sumii and Akinori Yonezawa [?,
?].

Awards

. 2011 Journal of Information Processing Outstanding Paper Award [?]

. Presentation Award in the 14th Workshop on Programming and Program-
ming Languages (PPL 2012)

. Presentation Award in the 11th Workshop on Programming and Program-
ming Languages (PPL 2009)

. Presentation Award in the 9th Workshop on Programming and Program-
ming Languages (PPL 2007)

Educational Experience

. 2003: Teaching assistant of “Compiler Lab” in Department of Information
Science, University of Tokyo.

This lab is for construction of compilers for functional languages. I gave
lecture once a week, answered questions from students and grading sub-
mitted reports. The topics covered in this lab include

e Generating a lexer/parser using lex/yacc

e Optimization (e.g., constant folding, removing redundant variable
bindings, inlining etc.)

Closure conversion

Generating assembly code

Type system of ML and implementation of the type inference algo-
rithm and

e Some advanced topics about type-based program analysis.

. 2004-2005: Teaching assistant of “ML Lab” in Department of Information
Science, University of Tokyo.

. 2012: Teaching assistant of “Functional Programming and Program Veri-
fication Lab” in Department of Information Science, Kyoto University.

These labs are for learning Objective Caml and type checking/inference.
I gave lecture once a week, answered questions from students and grading
submitted reports. The topics covered in this lab include



7

8

e Data types of OCaml

e Type system of OCaml

e Module system of OCaml
e Evaluation strategies

e Implementing an interpreter and the type inference algorithm of Min-
iML.

Services

General chair of PPL 2014.
Poster and Demo chair of APLAS 2012.
Program committee member of SACSIS 2013 and PEPM 2012.

Local organizer of NII Syonan Meeting: Hybrid Systems: Theory and
Practice, Seriously.

External reviewer of ESOP 2013, FoSSaCS 2013, COB 2012, APLAS 2012,
ECOOP 2012, LICS 2012, TACAS 2011, FoSSaCS 2011, ICFEM 2010,
INFORUM 2010, APSEC2010, CONCUR 2010, ICALP 2010, LICS 2010,
FoSSaCs 2009, POPL 2009, APLAS 2008, CiE 2008, CONCUR, 2008, SAS
2007 and SAS 2006.

Professional Society Memberships

ACM (SIGPLAN); Japan Society for Software Science and Technology; Infor-
mation Processing Society of Japan.

Publications

1]

Ichiro Hasuo and Kohei Suenaga. Exercises in nonstandard static analy-
sis of hybrid systems. In P. Madhusudan and Sanjit A. Seshia, editors,
CAV, volume 7358 of Lecture Notes in Computer Science, pages 462—478.
Springer, 2012.

Eri Iimura, Naoki Kobayashi, and Kohei Suenaga. Slicing for type-based
race analysis and presentation of the result (in japanese). In Proceedings
of the 9th Workshop on Programming and Programming Languages (PPL
2007), March 2007.

Eri limura, Naoki Kobayashi, and Kohei Suenaga. Identifying deadlock
errors by type error slicing (in japanese). Transactions of Information
Processing Society of Japan (Programming), 1(2):71-84, 2008.



[4]

Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage
analysis for the p-calculus. Logical Methods in Computer Science, 2(3),
2006.

Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage
analysis for the pi-calculus. In E. Allen Emerson and Kedar S. Namjoshi,
editors, VMCAI, volume 3855 of Lecture Notes in Computer Science, pages
298-312. Springer, 2006.

Koichi Kodama, Naoki Kobayashi, and Kohei Suenaga. Translation of tree-
processing programs into stream-processing programs based on ordered lin-
ear types (in japanese). In Proceedings of the 6th Workshop on Program-
ming and Programming Languages, March 2004.

Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of
tree-processing programs into stream-processing programs based on ordered
linear type. In Wei-Ngan Chin, editor, APLAS, volume 3302 of Lecture
Notes in Computer Science, pages 41-56. Springer, 2004.

Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of
tree-processing programs into stream-processing programs based on ordered
linear type. J. Funct. Program., 18(3):333-371, 2008.

Kohei Suenaga Ryosuke Sato and Naoki Kobayashi. Ordered types for
stream processing of tree-structured data. In Programming Language Tech-
niques for XML (PLAN-X 2009), January 2009.

Ryosuke Sato, Kohei Suenaga, and Naoki Kobayashi. Ordered types for
stream processing of tree-structured data. In Proceedings of Forum on
Information Technology 2009, September 2009.

Ryosuke Sato, Kohei Suenaga, and Naoki Kobayashi. Ordered types for
stream processing of tree-structured data. JIP, 19:74-87, 2011.

Kohei Suenaga. Type-based deadlock-freedom verification for non-block-
structured lock primitives and mutable references. In G. Ramalingam,
editor, APLAS, volume 5356 of Lecture Notes in Computer Science, pages
155-170. Springer, 2008.

Kohei Suenaga. Type Systems for Formal Verification of Concurrent Pro-
grams. PhD thesis, University of Tokyo, March 2008.

Kohei Suenaga, Ryota Fukuda, and Atsushi Igarashi. Type-based safe
resource deallocation for shared-memory concurrency. In Gary T. Leavens
and Matthew B. Dwyer, editors, OOPSLA, pages 1-20. ACM, 2012.

Kohei Suenaga and Ichiro Hasuo. Programming with infinitesimals: A
while-language for hybrid system modeling. In Luca Aceto, Monika Hen-
zinger, and Jiri Sgall, editors, ICALP (2), volume 6756 of Lecture Notes in
Computer Science, pages 392-403. Springer, 2011.



[16]

[19]

Kohei Suenaga and Naoki Kobayashi. Type-based analysis of deadlock
for a concurrent calculus with interrupts. In Rocco De Nicola, editor,
ESOP, volume 4421 of Lecture Notes in Computer Science, pages 490-504.
Springer, 2007.

Kohei Suenaga and Naoki Kobayashi. Fractional ownerships for safe mem-
ory deallocation. In Zhenjiang Hu, editor, APLAS, volume 5904 of Lecture
Notes in Computer Science, pages 128-143. Springer, 2009.

Kohei Suenaga, Naoki Kobayashi, and Akinori Yonezawa. Extension of
type-based approach to generation of stream-processing programs by au-
tomatic insertion of buffering primitives. In Patricia M. Hill, editor, LOP-
STR, volume 3901 of Lecture Notes in Computer Science, pages 98-114.
Springer, 2005.

Kohei Suenaga, Yutaka Oiwa, Eijiro Sumii, and Akinori Yonezawa. The
interface definition language for fail-safe c. In Proceedings of the 5th Work-
shop on Programming and Programming Languages (PPL 2003), March
2003.

Kohei Suenaga, Yutaka Oiwa, Eijiro Sumii, and Akinori Yonezawa. The
interface definition language for fail-safe c¢. In Kokichi Futatsugi, Fumio Mi-
zoguchi, and Naoki Yonezaki, editors, ISSS, volume 3233 of Lecture Notes
in Computer Science, pages 192—208. Springer, 2003.

Kohei Suenaga, Hiroyoshi Sekine, and Ichiro Hasuo. Hyperstream process-
ing systems: nonstandard modeling of continuous-time signals. In Roberto
Giacobazzi and Radhia Cousot, editors, POPL, pages 417-430. ACM, 2013.



