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ABSTRACT

The ring S, of formal power series in the noncommuting
variables a,, . . ., a, with the coeflicient field GF(2) is introduced
and sltudied. The term symbolic expression is used instead of for-
mal power series, since it gencralizes the concept of a symbolic
expression introduced in [2] and [3]. S_ is characterized as the
terminal objecl of the calegory Aul of aulomata. A category
theoretic characlerization of the subring S™ of S_ consisting of
rational sexps is also given.

Introduction

Theory of formal power series in noncommuling variables provides a use-
ful algebraic tool for the study of formal languages. In the most general selling
of the theory, the coeflicients of a formal power series are taken from an arbi-
trary semiring; and it is possible to prove useful theorems in this general setting.
(See e.g. Salomaa and Soillola[1].) In this paper, however, we will take the two
elemented Galois field GF(2) as Lhe coeflicient semiring. This choice of the
semiring will turn out to be very convenient. We will use the term symbolic
expression (or sexp for short) instead of [ormal power series, since it generalizes
the concept of a symbolic expression introduced in Sato[2] and Sato and
Hagiya[3]. In [2] and [3], it was shown that symbolic expressions constitute a
Nlexible dala structure; and a programming language called Hyperlisp which
computes (partial) recursive functions of symbolic expressions was introduced.
IHere we study symbolic expressions from an algebraic point of view.

In t, we study the ring S_ consisling of all the sexps. We show that S
salisfies a certain domain equation for an abstract data structure.

In 2, we characterize S_ as the terminal objeclt of the calegory Aut of
automata. We then study the subring S™ of S_ consisting of ralional sexps.
The well-l:nown characlerizalion of rational sexps in terms of finite automala is
established in our formalism. A calegory theorelic characterization of S$™f is
also g'iven.

In 3, we introduce Lhe subring S of S_ consisting of finile sexps. The rela-
tionship with the concept of a symbolic expression introduced in [2], [3] is also
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discussed.

1. S

Lel Z={a,, ... ,a,} (n=1) be an alphabel consisting of n distinct sym-
bols, which we will fix for the restl of Lhis paper. Lel W=XL* be the [ree
monoid over Lhe alphabel I, and lel 2={0,1} be lhe Galois field GF(2). We
pul

S =i{r|rw-2}.

We will use 7,5,¢ elc. lo denole elemenls of S_ and u,v,w elc. lo denole ele-
menls of W. llemenls of S_ are called symbotlic expressions or sexps for shorl.
Elemenls of W are called words. For a word w, |w| denoles ils length. We
write (r,w) for v(w). We remark Lhal S_ may be identified with 2" (lhe
power set of W) by the correspondence:

r < supp(r)=fwe W|(r.w)=1}.
Any sexp 7, then, nalurally becomes a language over W.

We now define addition and mulliplicalion on S_ as follows.

(r+s,w)=(r.w)+(s,w),

(rs,w)= ¥ (r.u)(s.v).

w=w

Under these operalions, S_ becomes a noncommulalive ring with the 0 and 1
defined by:

(0,w)=0,
1 if w=1 (the unil of #),

(1.w)= 0 olherwise.

By idenlilying 0, 1 €S _ wilth those in 2, we assume thal 2€S_. We will also
regard S_ as a veclor space over 2. Nexl, [or any we W we define weS _ by:

1 if w=u,

(w.u)= 0 olherwise.

Since Lhe map: w— w is one-lo-one and preserves multiplication on W, we will
identify w with w and assume Lhat W €S .

Consider the map n:S_ —S__ defined by

n(r)=(r.1).

It is a ring homomorphism and satisfies n2=n. If we regard S_ as a veclor
space, n becomes a projeclion and we have the direcl sum decomposilion:

S.=IlmneKermn.
Since Im =2, il we pul

M_=Kern={r|(r,1)=0}



we have
S =26 M_ (1.1)
We put A_=S_-M_. Elemenls of M_ are called molecules, and elements of
A are called aloms.
Next, we define a map 6:S_x W —-S_ by:
(6(r,u).v)=(r.wv).

IL is an acltion of the monoid W on S_, since we have

é(r,1)=r,
§(6(r.u).v)=6(r, uwv).

For a fixed w,

. 6(-,w):S_,—»S_

is a linear lransformation. In particular, for each i (1=i=n), we define

0.:S,—>S, by
0,(r)=6(7.q,).

We have Lhe following

Proposition 1.1. o (st)=n(s)o (t)+0,(s)t (1=i=n).
Proof.
(0 ,(st), w)=(6(st.q,). w)
=(st,a,w)
L (s,u)(tv)
w=qw

(s.1)(tiaw)+ ¥ (s.qu)(t.v)

e, uv=a;w

=n(s)(o (). w)+ ¥ (0,(s)u)(t.v)

uv=w

=(n(s)o ()+a (s)t.w). O

Note Lhal, by a simple compulation, we have o ,( aj)=6ij (1=1.j=n), where 6ij
is Kronecker's della.

3

dule (or, in other words, a righl ideal of the ring S_ ).

We now regard S as a right S_-module. M_ lhen becomes ils submo-

Theorem 1.2. <a,,...,aq,> formsabasisofM_
Proof It suffices to prove the following (a) and (b).
(a) If re M, then r=}] a,0 ,(7): Since reM_, we have (7,1)=0. On lhe olher

i

g
hand, since q,e M,

(Z;aiai(r).l)=2(aia (r).1)= E 1)(0 (7)., 1)=0.
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Nexl, for any we W we have

(za,-oi(r>.a,w)=<o,<zaioi<r)).w)
1 ~(Lo (a0 (n)w)
=27 (a0 (7))
—2[ a)0 (). w)+(n(a)o (0 ,(r).w)]
=g 6 40 (). w)
=(;,.(r>.w>
=(7‘.ajw).

w we have 7= 3, aiui(r).

Since any u€ W is eilher 1 or of Lhe {orm a;

i
(b) & a;4=0 => ;=0 (1= j=n):

i

=aj(2aiti)=20j(aitl)=20 a)t+n(a)a (4)= 26 4=t O

By Lhis theorem we have the right S_-module isomorphism:

g:S_e - eS_—M,_ (1.2)
such thal
| oty .. b)=at+ - +al.
We have
o N r)=<o,(r),....0,(r)>.
In view of (1.1), the map _
TS X xS _—A_
defined by
(¢, ., t)=e(t, .. ., )+ 1

is a bijection. Combining (1.1) and (1.2), we have the following set theorelic
isomorphism:
S, =~2xS_x - xS (1.3)
where
Te <n(r)o,(r),.. ., 0, (r)>.

By (1.3), we have the following proposition which is uselul [or the comparison




of Lwo sexps.

Proposilion 1.3. for any s, l€S

s=t <= n(s)=n(l), 0 ,(s)=0,(!) (1Sisn).

(1.3) may be rewritten as:
S, >~Str+8r (1.4)

where + denotes the (direct) sum ol two sets. This isomorphism tells us the
basic properties of the data structure S_. Namely, any sexp is an infinite n-ary
leaf-free tree which carries one bil information al each node. The recognizer n
distinguishes aloms from molecules. The constructor ¢ (7) conslrucls from
given m sexps I, (1=i=n) a molecule (alom, resp.) s whose i-th sublree L, is

recovered by Lhe seleclor o ;.

A sexp s is inverfible if Lhere exisls a { such thal si=(s=1. Since the !
above is unique for an invertible s, it is called the inverse of s and is denoled
by s”!. We wish Lo characlerize inverlible sexps. We need the following
lemma.

Lemma 1.4. IfreM_ thent*e M, (k=0) where

M, ={resS_| |wl<k = (r,w)=0}.

Proof Il k=0 then r°=1€ M, Assume 7€ M,. Then for any w such Lhal
Jwl|< k+1,

(rE+ L w)= Y (7%, u)(r,v)

=(r%, w)(r 1)+ Y (7%, u)(rv).

Since reM_, we have (7,1)=0; and if us* w we have (7%,u4)=0 by the assump-
tion. Hence (r**!', w)=0. OO
Theorem 1.5. A sexp is twerlible iff il is an alom.

Proof (=>) If s is inverlible, then ss™'=1. Hence, I = n(1) = n(ss”') =
n(s)n(s™'). Then we have n(s)=1, so s is an atom.

(<) Lel s be an alom. We define a molecule 7 by pulling r=1+s. Then we
define a sexp ¢ by:

(tLw)=(1+7+ - +7lwl ),
By Lemma 1.4, forany £=20, we have
(1+7+ -+ rlWPE )= (1474 - - 4 plwly,

We have st=1 because:



(stw)= Y (s.u)(Lv)

u=w

= X (1+ru)(l+rt - +7ivhy)
= ¥ (t+ru)(i+r+ - +rlvla)

=(1+ 7w+ 4)
=(1,w)+ (1wl )
=(1,w).

Thal {s=1 holds can be proved similarly. []

2. st
We define S™ as the least subset of S, such thal
(i) 2uzrgsm™,
(ii) s.teS™ = s+leS™,
(iii) s, te€S™ = sle S™,
(iv) seS™nM_=>(l1+s)"lesSm™,
S™! is a subring of S_. I[n Lhis seclion, we will study the relationship between
S™! and finile automala. Here we define an aulomalon (over L) as a Lriple
X=<Xby.ey>
where
(1) X is a (possibly infinite) nonemply sel of slales,
() 6,:Xx W— X is an aclion of W on X,
(3) ex:X—2
Let X be an aulomalon. For each 7 (1=<i=n), we define Lhe map
a{":X—» X

by pulling aix(x)=6x(x,ai). This funclion delermines Lhe lransilion of slales
for Lhe inpul symbol a;. A slate z€ X is considered lo be accepled il Ex(x)=l.
We now define a function

Ly:X—S,_

by pulling (Ly(z) w)=¢,(6,(z,w)). Ly(z) may be considered as Lhe
language which X, wilh Llhe inilial state z, accepts. lere we also note Lhat
S_=<S_:6,7> is an aulomalon. Moreover, L, becomes a morphism in lhe
calegory Aul of aulomala which we now define.

The category Aul, by definilion, has all aulomala as ils objecls. Ils mor-
phisms are defined by:




h€e Hom(X.Y) <> h is a map for which lhe diagram below commules:

hxl,

Xx W . > Yx W
[ 6,
L 4 h v
X — Y
Ex EY
A\'4 4
2 — 2
12

Proposilion 2.1. Ly,:X—>S_€Hom(X.S,_).
Proof.

(6(Ly(z) w) u)=(Ly(z) wu)=€ (6 y(z, uu)),
(Lx(dx_(x-w))-u)=€x(6x(6x(I-w)-u))=ex(6x( T, wu)).
"(Lx(x))'_"(l’x(x)-l)=Ex(6x(x-1))=€x(x)- U

Proposilion 2.2. Lg :S_—S, is ideniily.
Proof.
(Ls_('r),w)=71(d(r,w))=(6(r.w).1)=(r,w1)=(r,w). O

Proposilion 2.3. h€Hom(X,Y)=>L,ch=1L,.
Proof

(Ly(h(z)) w)=€, (6 (h{z). w))=€,(h(dy(z,w)))=¢€ (6 y(z. w))=(Ly(x) w). -
O

These propositions yield the following theorem.
Theorem 2.4. S_ 1s the terminal object of Aul.

Proof Let X be any automaton. We have L,€Hom(X.S_) by Proposilion
2.1. Next, take any he Hom(X.S_). By Proposition 2.2 and Proposition 2.3
for Y=S_, we have Ly=Lg °ch=1ch=h. Thus we have proved thal
Hom(X,S_) is a singleton set for any X, i.e, S

- isterminal in Aut. J
We now wish to characterize S™ calegorically. Lel k be an arbilrary
natural number. For a ring R, we let M, (R) denole the matrix ring consisting

of kx k R-malrices. We deline a ring homomorphism



. O, M (S.)—> M (2)
by pulling llk(S)z(n(sij)) for S=(sij)€ M (S,.). The scl
G.=117'(1,).
where /. .is Lhe kx k unil malrix, lhen becomes a monoid under malrix mulli-
plicalion. Moreover, we have:
Theorem 2.5. &, forms a group under malrix mulliplicalion.

Proof. Lel £, (1=1,j= k) be the kx k malrix such thal ils (4,) elemenl is 1
and all other elemenls are 0. For any molecule re M, we pul

Quiyim)=1 +7E,.
Il is easy lo see thal @, (i,j:7)€ G, and

(i,jir)~= Q. (i jil+(1+7)~Yy il i=j,
s Q. (4. jir) if i

We can Lhen prove, using usual sweep oul melhod, Lhal the group generaled by
the set {@,(1.j:7)[1=1.j=k,re M_} coincides with G,. O

Remark. The proof also shows lhal if Se€ G, n M (S™), S~} is also a
member of M, (S™). ‘

Lel X=<X;6X.€X> be a finile aulomalon wilh k& slales so klhal
X={z,,. ...z} For each | (1=(=n) we define o {1, ..., k}—=>{§1,.. . ki
by the condilion:

#,(i)=j <= o Mz)=1;

We lhen define a kx k S, -malrix S=(s;;) by pulling

sij=6ij+ Z,: 60,(1‘)]'0'!'

We nole thal S€EG, n M, (S™!). Lel X; (1=1=k) be k distincl indelerminales
and lel x=(X, - - - X,). We also pul e='(e,(z,) - ey(x,)). We call lhe
cequalion:

Sx=e (2.1)

“Lthe characleristic equalion of Lhe finile aulomalon X. By Theorem 2.5 il has lhe
unique solulion x=S"'e. Remark lhat (2.1) is equivalent Lo the following sys-
lem of equalions:

X=a, X, gt +anxu‘(i)+€X(xi) (i=1,. ... k).
Theorem 2.6.
Lx(xi)=ale(x0'“))+ Ce +anLX(J:0 (i))+ex(:ri) (i=1,....k).

Proof. Since Ly€Hom(X,S_) we have




0 (Ly(m))=Ly(0 X(5))=Ly(z, ).

n(Ly(z))=¢,(x).
Therefore we have:

n(RI—IS)=n(a,Lx(xal(i)))+ Ce +n(aka(xUk(i)))+n(ex(:ri))

=€ (z;)

=n (LHS),

a[(RHS)=0[(‘11L,\'(IU|“)))+ S +al(akLX(Iat(-i,))).Fal(GX(Ii))

= Lx(2y ()

=0 (Ly(z;))
=0 ,(LHS).

This proves LHS=RHS. I

This lheorem says lhal L,(z;)'s give lhe solulion to the equation (2.1) and
hence Lhey are in S™¢,

We nexl show thal, conversely, any language in S™! can be represented by
a finite automalon. First we remark that, for a finile set X, 2% becomes a vec-
Lor space over 2 under the addilion defined by:

U+V=(U-V)u(V-U).

If we identify any € X with the singleton sel §{z} then X becomes a basis of
the veclor space 2%. Lel V be any veclor space over 2. Then any map [ XV
can be uniquely extended to a linear map from 2% lo V. We will denole this
exlended tnap also by f.

Lel X be any automaton and let Y be a subsel of X which is closed under
alx for each [ (1=!=mn). Then we can nalurally introduce inlo Y an auloma-
ton structure, by restricting that of X to Y, which makes Y a subaulomaion of
X.

We will wrile
Xz Er
il = is a stale of a finite automaton X and r=LX(:r); and in this case we say
thal z€ X realizes r. Such 7's are called realizable.
Theorem 2.7. A sexpr is realizable iff re S™,
Proof. Omnlyif parifollows from Lhe remark below Theorem 2.5.
We prove if part by induclion on Lhe construclion of r.

(i) Since lhe set 2uELCS_ is closed under the funclions ¢, (1=(=n), it
becomes a finite subautomalon of S_ and each state realizes itself. (cf. Propo-
sition 2.2.)
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(ii) r=s+{: Assume thal X>z,Fs and Y>y, l. We define an aulomalon Z
by pulling:

Z=XxY=fzxy | z€ X.ye Y},
b(zxy w)=6,(z, w)x6,(y. w),
ez(xxy)=ex(z)+€y(y).

Then by a simple compulalion we have L,(zxxy)=L,(z)+L,(y), so thal
ZozyxyygEs+l.

(iii) r=sl: Assume lhal X> ;s and Y>y, L. We define an aulomalon Z
by pulling:

Z=2YxX={yxz | ye2¥ ze X},
o Hyxz)=(0 [ (y)tep(z)o M(y))xa X(z) (151=n),
ez(yxz)=eyp(y)+ey(z)eyp(yp).
We show Lhal
Lyxz)=Ly(y)+ Ly(z)Ly(yy) (yxz€Z)
solves the characlerislic equation of the aulomalon Z. l.e., we show thal
L(z)=a,L(0Z(2))+  +a,L(0 Z(2))+e,(2) (2€Z2) (2.2)
Lelling z=yx z, we compare the LHS and RHS of (2.2) as follows.
m(LHS)=n(Ly(y))+n(Ly(z))m(Ly(y,))
=ep(y)tex(z)ey(yp)
=ez(2)

=7 (RHS).

o (LHS)=0,(Ly(y))+ 0 (Ly(z)Ly(y,))
=L(o My +n(Ly(z))a,(Ly(yy))+a,(Ly(z))Ly(y,)
=L(a [ (yN)+ex(z)Ly(o [y + Ly(o ¥(2)) Ly (yp)
=L(o #(2))
=g Z(RIS) (1=(sn).

This proves (2.2), so Llhal we have Lz(z)=Z(z). Hence, we have ,
La(¢pxxzy)=Ly(zy)Ly(yy)=sl. le., Z>¢x z; sl .
(iv) 7=(1+s)7', s€S™n M_: Assume lhal X>z,ks. Since 1 = 77 !r !
(1+s)r = 7v+sr, we have 7=1+sr. So, a,(7) = n(s)a,(r) + o,/s)r 5
o,(s)r (1=(=n). We define an aulomalon Z by pulling:

i
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Z=2%=t{x | x< X},

o 2(x)=0 H(x)+ey (x)o Mzy) (1=1sn),

€ 5(x)=€,(x).
We show Lhal
L(x)=Ly(x)r (x€2)
solves Lhe characleristic equalion of the aulomalon Z. l.e., we show the equa-
tion:

L(x)=a,L(0 Z(x))+ - - +a,L(0 Z(x))+e,(x) (x€2) (2.3)

We compare Lhe LHS and RHS of (2.3) as follows. "

n(LHS)=n(Ly(x))n(r)=¢€y(x)=¢€,(x)=n(RHS),

o (LHS)=0¢ ,(L¥(x)T)
=0 ,(Ly(x))r+n(Ly(x))a,(7)
=Lx(alx(x))r+ex(x)al(s)r
=(Ly(o F(x))+ep(x) Ly(o M zy)))7r
=Lx(alx(x)+ex(x)alx(xo))'r
=f,(atx(x)+ex(x)alx(x0))
=L(o Z(x))
. =0 ,(RHS).
This proves (2.3),.. so Lhal we have‘ Lz(x)=Z(x). Hence we have
Z>zx, i=LZ(xo)=f,(x0)=Lx(xo)r= sr=1+7r. By (ii) above, 7 is also realizable.

a
Corollary 2.8. reS™ = (7)eS™ (1=i(=n).
Proof By Theorem 2.7, we can find X and z such that Xz Er. Then we
have X0 (z) Fo,(r). Hence ¢ ,(7r)es™. O )
Remark. 1t is possible to prove Corollary 2.8 directly by induction on the
construction of 7. :

Since S™ is closed under ¢, for each [ (1=(=n), S™ becomes a subau-
tomanton of S_. Although S™ is nol a finite aulomaton, it is a locally finile
automaton in the sense of the following definition.

Definition. An automaton X=<X;0,e> is locally finile ifl the set
X|z=}y | y=6(=z.w) for some we€ W} is finite for all z€ X.

We will denote by Aut™ the full subcategory of Aut consisting of all the locally
finite automata. We have Lhe following theorem.

Theorem 2.9. S™ is lhe lerminal object o[Aut’“‘.
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Proof. We [irst prove the claim that 87 js a locally finile automalon. Suppose
thal r€eS™, By Theorem 2.7, we can find X and z such thal Xz r. Since
Im L, is finile and closed under ¢, (1=i=n), the sel X|z is also finile. ‘This
proves the claim.

Next, lel X be an arbitrary locally finile automalon, and consider the map
Ly:X—»S,_. lorany zeX, X|z becomes a finile subautomaton of X. Then we
have LX(:c)=LX|x(J:)€S"“. so lhal we may regard L, as the map Ly:X—S™
Now the thecorem can be proved similarly as '"heorem 2.4. []

3. .8
We define S as Lthe leasl subsel of S such Lhat
(i) 2vrgs,
(ii) s.l€S=>s+!l€S,
(iii) s.leS =>sleS.
According lo tlhis. definilion of S, S becomes a subring of S_,. Elemenls of S
are called finile sexps. We can eslablish the sel Lheorelic isomorphijsm:

S =~ Sn 4+ S» (3.1)

similarly as (1.4). Just as (1.4) expressed some characleristics of S_, Lhis equa-
lion says thal S is a dala struclure equipped wilh the recognizer n, conslruclors
o, 7 and seleclors ¢, (I=1=n). [Furlhermore, il is easy lo verily thal S can be
characlerized as Lhe least subsel of S_ such thal

(1) 0es,
(2) ¢,....t,eS=>0(l... ., {,)€S,
(3) ¢.....L,es=7(L, ..., LJES.

Namely, any finile sexp can be conslructed from Lhe inilial sexp 0 by applying
o and T finilely many limes. This characlerizalion of S gives Lhe following Pro-
posilion, which explains our naming of finite sexps. ‘

Proposilion 3.1. A sexp s is finile {fsupp(s) is a finile sel.

We remark thal Scoll[4, p. 96] also discusses the domain equalion of the
form (3.1), and gives a solulion for il as a neighbourhood syslem. In Scoll[4],
the inlerprelations of sums and producls arc slighlly diflerenl from ours, so
thal lolal clemenls in his solulion corresponds to symbolic expressions in our
sense. lle also poinls oul thal any evenlually periodic lolal lree (which
corresponds to ocur ralional sexp) represenis an aulomalon such Lhat each stale
of the automalon realizes ilsell.

FFinally, we remark thal in case 2=§a|.a2i finile sexps are precisely Llhe
symbolic expressions in lhe sensc of Salto[2] and Salo and llagiya[3]. In [2]
and [3], the funclions ¢, 7, ¢, and o, are respeclively called cons, snoc, car and
cdrlollowing the tradilion of Lisp.
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