Symbolic Expressions and Variable Binding
Lecture 4

Masahiko Sato

Graduate School of Informatics, Kyoto University

September 6-10, 2010



Plan of the 5 lectures

@ Overview

@ Traditional definition of Lambda terms
© Lambda terms by de Bruijn indices

© Lambda terms as abstract data type
© Derivations as abstract data type



Plan of this lecture

Map based lambda expressions
(Map): Map

(Sxp): Schematic lambda expressions
(Exp): Lambda Expressions
Translation from (Txp).

Comparison with (dxp).



Outline of Map-based expressions

We introduce the key concept of map ({Map)) which has a
binary tree structre.

A map plays a role similar to an index in a de Bruijn
expression.

We define abstract lambda expressions ({Sxp)) , which are
almost like lambda expressions except that an abstract may
contain holes which when filled with an expression becomes a
real expression.

Schematic lambda expressions may contain maps which are
used to specify the positions of variables and local holes.

Finally, we define lambda expressions ((Exp)) using abstracts.



The class (Map)

The mother class (Map) (maps) has the following creation
methods:

(zro) : (Map) “re (one) : (Map) one

m : (Map) mn: (Map)

(cns m n) : (Map) ns



The class (Map) (cont.)

An example

(one) : (Map) ¢ Gro) : (Map) “re

————— one
(one) : (Map) (cns (one) (zro)) : (Map)
(cns (one) (cns (one) (zro))) : (Map)

cns

which can also be expressed as a tree:

Map/cns

Map/one Map/cns

Map/one Map/zro



The class (Map) (cont.)

An example

(one) : (Map) M o) : (Map) “re

(one) : (Map) one (cns (one) (zro)) : (Map)
(cns (one) (cns (one) (zro))) : (Map)

cns

which can also be expressed as a tree:

Map/cns
Map/one Map/cns
Map/one Map/zro

Remark 1 Map/one specifies occurrences of a bound hole in the scope of
a A-binder.



The class (Map) (cont.)

An example

(one) : (Map) M o) : (Map) “re

————— one
(one) : (Map) (cns (one) (zro)) : (Map)
(cns (one) (cns (one) (zro))) : (Map)

cns

which can also be expressed as a tree:

Map/cns

Map/one Map/cns

Map/one Map/zro

Remark 2 Map/zro specifies an occurrence of a free hole in the scope of
a A-binder.



Submap relation on (Map)

We define the submap relation on (Map) by the function Map/sub?
Map/sub? : (Map) (Map) — (bool)

(defun Map/sub? (m n)
(case m

((zro) (case n ((zro) t) ((one) t)))

((one) (=7 m n))

((cns ml m2)

(case n
((cns nl1 n2)
(and (Map/sub? ml nl) (Map/sub? m2 n2)))))))



Minus operation on (Map)

We define the minus operation on (Map) by the function minus.

Map/mns : (Map) (Map) — (Map)

(defun Map/mns (m n)
(if (Map/sub? n m)
(case m
((zro) (case n ((zro) m)))

((one) (case n ((zro) m) ((one) (Map/zro))))
((cns m1 m2)
(case n

((cns n1 n2)

(Map/cns (Map/mns mi n1) (Map/mns m2 n2))))))
(error "Cannot subtract")))



Closed map

We can define the function
Map/closed? : (Map) — (bool)

(defun Map/closed? (m)
"Check if <Map> m is closed."
(case m
((zro) true)
((one) nil)
((cns ml m2)
(and (Map/closed? ml) (Map/closed? m2)))))



Schematic lambda expressions

The class (Sxp) of schematic lambda expressions is defined by the
followng creation methods:

x : (Nat)
(box) : (Sxp) box (var x) : (Sxp) ver
M : (Sxp) N :(Sxzp) o m: (Map) M : (Sxp)

(app M N) : (Sxp) PP (lam m M) : (Sxp)



Schematic lambda expressions

The class (Sxp) of schematic lambda expressions is defined by the
followng creation methods:

x : (Nat)
(box) : (Sxp) box (var x) : (Sxp) ver
M : (Sxp) N :(Sxzp) o m: (Map) M : (Sxp)
(app M N) : (Sxp) (lam m M) : (Sxp)

Remark 1 A (box) represents a hole which may be filled with an
abstract later. Initially, a box is free, but it may become bound by
the lam rule. We may think of a free box as representing the

schematic (or, meta) variable.



Schematic lambda expressions

The class (Sxp) of schematic lambda expressions is defined by the
followng creation methods:

x : (Nat)
(box) : (Sxp) box (var x) : (Sxp) ver
M : (Sxp) N :(Sxzp) app m: (Map) M : (Sxp)
(app M N) : (Sxp) (lam m M) : (Sxp)

Remark 2 The rule 1am may be applied only when m is a submap
of (Sxp/2Map M), where the function Sxp/2Map is defined in the
next slide. We may think of m as representing Quine-Bourbaki
binding.



Schematic lambda expressions (cont.)

We define:
Sxp/2Map : (Sxp) — (Map)

(defun Sxp/2Map (M)
(case M
((box) (Map/one))
((var x) (Map/zro))
((app M N) (Map/cns (Sxp/2Map M) (Sxp/2Map N)))
((lam m M) (Map/mns (Sxp/2Map M) m))))

Remark The Sxp/2Map function and the class (Sxp) are defined in
a mutually inductive/recursive way.



Instantiation operation on (Sxp)

We define the instantiation function:
Sxp/ist : (Sxp) (Sxp) — (Sxp)

(defun Sxp/ist (M N)

"Instantiate <Sxp> M by <Sxp> N."

(case M
((box) N)
((var x) M)
((app M1 M2) (Sxp/app (Sxp/ist M1 N) (Sxp/ist M2 N)))
((lam m M)
(lam (Map/ist m (Sxp/2Map N)) (Sxp/ist M N)))))

We define Map/ist in the next slide.



Instantiation operation on (Map)

We define the instantiation function:
Map/ist : (Map) (Map) — (Map)

(defun Map/ist (m n)

"Instantiate <Map> m by <Map> n."

(case m
((zro) m)
((one) n)
((var x) m)
((cns ml m2)
(Map/cns (Map/ist ml n) (Map/ist m2 n)))))



Closed schematic expressions

We define the function
Sxp/closed? : (Sxp) — (bool)

(defun Sxp/closed? (M)
(Map/closed? (Sxp/2Map M)))

We define the class (Sxp0) as a subclass of (Sxp) consisting of
closed schematic expressions.

Remark Compared to the definition of closedness of instances of
(Dxp), the definition here is natural.



Lambda expressions

The class (Exp) of lambda expressions is defined by the followng
creation methods:

x : (Nat)
var
(var x) : (Exp)
M : (Exp) N : (Exp) app M : (Sxp)
(app M N) : (Exp) (lam M) : (Exp)

Remark In the 1am method, M must be an instance of (Sxp), but
there are no extra side conditions on this rule.



Lambda expressions (cont.)

Since the creation method lam does not have extra side conditions,
we can characterize (Exp) as the free algebra having the three
operations below.

Exp/var : (Nat) — (Exp)
Exp/app : (Exp) (Exp) — (Exp)
Exp/lam : (Sxp) — (Exp)

Given an instance M of (Sxp), the 1am method binds all the free
boxes in M.

For example, (Exp/lam (Sxp/box)) represents the traditional
lambda expression Az[x].



Comparison of the 1am methods.

x: (Nat) M : (Txp)
(lam & M) : (Txp)

i : (Nat) _ M : (Dxp)
(idx 1) : (Dxp) 1dx (lam M) : (Dxp)
m: (Map) M : (Sxp) M : (Sxp)
(lam m M) : (Sxp) lam (lam M) : (Exp)

Remark 1. In (Txp), lam is not injective.



Comparison of the 1am methods.

x: (Nat) M : (Txp)
(lam & M) : (Txp)

i : (Nat) _ M : (Dxp)
(idx 1) : (Dxp) 1dx (lam M) : (Dxp)
m: (Map) M : (Sxp) M : (Sxp)
(lam m M) : (Sxp) lam (lam M) : (Exp)

Remark 2. In (Dxp), lam binds indices determined by M.



Comparison of the 1am methods.

x: (Nat) M : (Txp)
(lam & M) : (Txp)

i : (Nat) _ M : (Dxp)
(idx 1) : (Dxp) 1dx (lam M) : (Dxp)
m: (Map) M : (Sxp) M : (Sxp)
(lam m M) : (Sxp) Lam (lam M) : (Exp)

Remark 3. In (Sxp), 1am binds only boxes specified by m from free
boxes in M. lam is injective since the method may be applied only
when m is a submap of (Sxp/2Map M).



Comparison of the 1am methods.

x: (Nat) M : (Txp)
(lam & M) : (Txp)

i : (Nat) _ M : (Dxp)
(idx 1) : (Dxp) 1dx (lam M) : (Dxp)
m: (Map) M : (Sxp) M : (Sxp)
(lam m M) : (Sxp) lam (lam M) : (Exp)

Remark 4. In (Exp), 1lam does not have any extra side condition.



Isomorphism between (Exp) and (Sxp0)

We define a function
Exp/2Sxp : (Exp) — (Sxp)

(defun Exp/2Sxp (M)
"Convert <Exp> M to an <Sxp>."
(case M
((var x) (Sxp/var x))
((app M N) (Sxp/app (Exp/2Sxp M) (Exp/2Sxp N)))
((lam M) (Sxp/lam (Sxp/2Map M) M))))

We define Sxp/2Exp as the inverse of Exp/2Sxp.



(B3-conversion

We can define the function
Exp/beta : (Exp) (Exp) — (Exp)

(defun Exp/beta (M N)
(case M
((lam M) (Sxp/2Exp (Sxp/ist M (Exp/2Sxp N))))
(- (error "Cannot convert"))))



Translation from (Txp)

[demo]



