Symbolic Expressions and Variable Binding
Lecture 5

Masahiko Sato

Graduate School of Informatics, Kyoto University

September 6-10, 2010



Plan of the 5 lectures

@ Overview

@ Traditional definition of Lambda terms
© Lambda terms by de Bruijn indices

© Lambda terms as abstract data type
© Derivations as abstract data type



Plan of this lecture

Map based Natural Deduction system

(
(
(
(
(
(
(
(
(
(

Map):

F
0bj
0Ob

obj
ob
P

[l
(=]
~ — — T — — — — o

-

'_h
=

Prp

Der

Map

Functions

Objects

List of objects
Schematic Objects
Schematic List of objects
Propositional Functions
Schematic Propositions
Propositions

Derivations



Map based Natural Deduction system

We define a Natural Deduction system for a first-order predicate
logic as an abstract data type.

This is done by creating the mother class (Der) of derivations.



The class (Map)

The mother class (Map) (maps) has the following creation
methods:

(zro) : (Map) “re (one) : (Map) one

x : (Nat) m: (Map) mn:(Map)
var cns
(var x) : (Map) (cns m n) : (Map)




The class (Fun)

We define the class of functions (Fun). Each function has a fixed
arity, and for each arity there are countably many functions having
the arity.

Fun/fun : (Nat) (Nat) — (Fun)

The first argument of fun is the name of the created function and
the second its arity.
The creation method has no extra side-condition. So, we could
specify it as above. The method may be specified in the usual
form below.
f:(Nat) mn:(Nat)
(fun f n) : (Fun)

fun



The class {0bj)

The class (0bj) of objects is defined by the following specification.
This class is defined simultaneously with the class (ObL) of /ist of
objects.

var : (Nat) — (Obj)
app : (Fun) (ObL) — (0Obj)

The application method (app) may be applied only when the
following side-condition is satisfied:

(defun Obj/app-ok? (F L)
"Check if <Fun> F is applicable to <ObL> L."

(case F
((fun £ n) (=7 n (ObL/length L)))))



The class (0ObL)

The class (ObL) of list of objects is defined by the following
specification.

nil: — (ObL)

cns : (Obj) (ObL) — (ObL)



The class {obj)

The class {obj) of schematic objects is defined by the following
specification. This class is defined simultaneously with the class
(obL) of schematic list of objects.

box : — (obj)
var : (Nat) — (obj)
app : (Fun) (obL) — (obj)

The application method (app) may be applied only when the
following side-condition is satisfied:

(defun obj/app-ok? (F L)
"Check if <Fun> F is applicable to <obL> L."
(case F
((fun £ n) (=? n (obL/length L)))))



The class {obL)

The class (obL) of list of schematic objects is defined by the
following specification.

nil: — (obL)
cns : (obj) (obL) — (obL)



The class (Pfn)

We define the class (Pfn) of propositional functions Each function
has a fixed arity, and for each arity there are countably many
functions having the arity.

Pfn/fun : (Nat) (Nat) — (Fun)

The first argument of fun is the name of the created function and
the second its arity.



The class {prp)

The class {prp) of schematic propositions is defined by the
following specification. This class is defined simultaneously with
the class (prp) of schematic propositions.

var : (Nat) — (prp)

app : (Pfn) (obL) — (prp)

imp : (prp) (prp) — (prPp)

all: (Map) (prp) — (prp)

som : (Map) (prp) — (prp)
The application method (app) may be applied only when the

following side-condition is satisfied:

(defun Prp/app-ok? (P L)
"Check if <Pfn> P is applicable to <obL> L."
(case P
((fun p n) (=7 n (ObL/length L)))))



The class {prp)

The class {prp) of schematic propositions is defined by the
following specification. This class is defined simultaneously with
the class (prp) of schematic propositions.

var : (Nat) — (prp)

app : (Pfn) (obL) — (prp)
imp : (prp) (prp) — (prP)
all : (Map) (prp) — (prp)
som : (Map) (prp) — (prp)

The methods all and som are applicable to m : (Map) and
A : (prp) only when m is a submap of (prp/2Map A).



The class (Prp)

The class (Prp) of propositions is defined by the following
specification. This class is defined using the class (prp).

var : (Nat) — (Prp)
app : (Pfn) (ObL) — (Prp)
+ (Prp) (Prp) — (Prp)
all : (prp) — (Prp)
som : (prp) — (Prp)

im

o

The application method (app) may be applied only when the
following side-condition is satisfied:

(defun Prp/app-ok? (P L)
"Check if <Pfn> P is applicable to <ObL> L."
(case P
((fun p n) (=7 n (ObL/length L)))))



The class (Der)

We are now ready to define the mother class (Der) of derivations.
Simultaneously with the definition of the class, we define the
functions:

Der/FA : (Der) — (Map)
Der/ccl : (Der) — (Prp)

The function Der/FA computes the positions of free assumptions
as a map.

The function Der/ccl computes the conclusion of a given
derivation.

In this way, we can extract both the free assumptions and the
conclusion of any derivation by computation.



The class (Der) (cont.)

The class (Der) of derivations is defined by the following
specification.

as

=]

(Nat) (
imI : (Nat) (
imE : (Der) (
all : (Nat) (Der) — (Der)
alE : (Der) (
smI : (Der) (
(Der) (

smE :

Of these, only the first two methods do not have extra
side-conditions.



Assumption

The method asm enables us to assume that a proposition holds.

i:(Nat) A:(Prp)
(asm © A) : (Der)

The number % is used by the imI method to refer to the
assumption.

Note that A : (Prp) means that the second argument of the
method asm must be a proposition (that is, (Prp)).

The same holds for the first argument as well.



Implication

The two methods below introduce and eliminate an implication
proposition from its major argument.

n: (Nat) A:(Prp) d: (Der) d: (Der) e: (Der)
(imI n A d) : (Der) 1m (imE d e) : (Der) 1mE

The method imE has the following side-condition.

(defun Der/imE-ok? (d e)
(case (Der/ccl d)
((imp A B) (=7 A (Der/ccl e)))
(_ nil)))



Universal proposition

The two methods below introduce and eliminate an implication
proposition from its major argument.

x: (Nat) d: (Der) d: (Der) a:(0bj)
(all x d) : (Der) all (alE d a) : (Der)

alE

Remark 1 The method (alI) has the following side-condition.

(defun Der/alI-ok? (x d)
(Der/eigen? x (Der/FA d) d))

We define Der/eigen? later.



Universal proposition

The two methods below introduce and eliminate an implication
proposition from its major argument.

x: (Nat) d: (Der) d: (Der) a:(0bj)
(all x d) : (Der) all (alE d a) : (Der)

alE

Remark 2 The method (alE) has the following side-condition.

(defun Der/alE-ok? (d a)
(case (Der/ccl d)
((all A) true)
(_ nil)))



Existential proposition

The two methods below introduce and eliminate an implication
proposition from its major argument.

d:(Der) A:(prp) a:{0bj)
(sml d A a) : (Der) sel

The method (smI) has the following side-condition.

(defun Der/smI-ok? (d A a)
(=7 (Der/ccl d)
(prp/2Prp (prp/ist A (Obj/20bj a)))))



Existential proposition (cont.)

d:(Der) zx:(Nat) e: (Der)
(smE d x e) : (Der)

smE

The method (smE) has the following side-condition.

(defun Der/smE-ok? (d x e)
(case (Der/ccl d4)
((som A)
(case (Der/ccl e)
((imp A1 C)
7 Al = A(x)
(and (=7 Al (prp/2Prp (prp/ist A (prp/var x))))
(Der/eigen? x (Der/FA e) e)
(not (Prp/occ x C))))
(_ nil))
(_ nil))))



The conclusion of a derivation

We define Der/ccl : (Der) — (Prp) as follows.

(defun Der/ccl (d)
(case d
((asm n A) A)
((imI n A d) (Prp/imp A (Der/ccl d)))
((imE 4 e)

(case (Der/ccl d) ((imp A B) B)))
((all x d) (Prp/All x (Der/ccl d)))
((alE d a)

(case (Der/ccl d)

((all A) (prp/2Prp (prp/ist A (Obj/20bj a))))))
((smI d A a) (Prp/som A))
((smE d x e)
(case (Der/ccl e) ((imp A C) C)))))



Free assumptions of a derivation

We define Der/FA : (Der) — (Map) as follows.

(defun Der/FA (d)
((asm n A) (Map/one))

((imI n A d) (Map/mns (Der/FA d) (Der/occ n A d)))
((imE d e) (Map/cns (Der/FA d) (Der/FA e)))

((all x d) (Der/FA 4))

((alE d a) (Der/FA 4))

((smI d A a) (Der/FA d))

((smE d x e) (Map/cns (Der/FA d) (Der/FA e))))



Free occurrences of an assumption

We define Der/occ : (Nat) (Prp) (Der) — (Map) as follows.

(defun Der/occ (i A 4)
(case d
((asm j B)

(if (and (=7 A B) (=7 i j)) (Map/one) (Map/zro)))
(GnI j B d)

(if (and (=7 A B) (=7 i j)) (Der/shp d) (Der/occ i A d)))
((imE d e) (Map/cns (Der/occ i A d) (Der/occ i A e)))
((all x d) (Der/occ i A 4))

((alE d a) (Der/occ i A d))
((smI d A a) (Der/occ i A d))
((smE d x e) (Map/cns (Der/occ i A d) (Der/occ i A e)))))



The shape of a derivation

We define Der/shp : (Der) — (Map) as follows.

(defun Der/shp (d)
"Compute the shape of <Der> d as a map."

(case d
((asm
((imI
((imE
((all
((alE
((smI
((smE

j B) (Map/zro))

j B d) (Der/shp d))

d e) (Map/cns (Der/shp d) (Der/shp e)))

x d) (Der/shp d))

d a) (Der/shp d))

d A a) (Der/shp d))

d x e) (Map/cns (Der/shp d) (Der/shp e)))))



Eigenvariable condition

(defun Der/eigen? (x m d)
(case d
((asm i A) (if (=7 m (Map/zro)) true (not (Prp/occ? x A))))
((imI i A d) (Der/eigen? x m d))
((imE d e)
(case m
((cns ml m2)
(and (Der/eigen? x ml d) (Der/eigen? x m2 e)))))
((all y )
(if (=7 x y) true (Der/eigen? x m d)))
((alE d a) (Der/eigen? x m d))
((smI d A a) (Der/eigen? x m d))
((smE 4 y e)
(if (=7 x y) true
(case m
((cns ml m2)
(and (Der/eigen? x ml d) (Der/eigen? x m2 e))))))))



