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Introduction

The main objective of the present paper is to clarify a close rela-

tionship between Gentzen-type sequential formulation of formal systems

(especially of modal calculi) and Kripke-type semantics. Though the
investigations by Schiitte [31], Maechara [20], Fitting [3], Prawitz [27],
etc. have suggested this relationship either explicitly or implicitly,  the
usefulness of Gentzen systems for the semantical studies of modal calculi

"seems to be less recognized than it deserves. In this paper, we wish

to establish its usefulness in a decisive way. We now proceed to explain
the background motivation for our study. .

When an interpretation, or semantics, of a formal system is given,
we are always interested in the question: ““Is it complete?” Indeed,
the completeness of the semantics is essential so that it is really useful
for the study of the formal system in question. The naturalness of
the semantics is fundamental as well. For instance, in the case of modal
calculi, we know such semantics as algebraic, topological and Kripke-
type. (See Cresswell [2], Lemmon [18], Rasiowa [28], Rasiowa-Sikorski

[29], Segerberg [34] etc.) Among these, Kripke-type semantics introduced-

by Kripke [15, 16] has proved to be most successful.

On the other hand, the method of formulating a formal system
is not unique. Formulations such as Hilbert-type, natural deduction,
Gentzen’s sequent system and Smullyan’s analytic tableau are well-known.
And each formulation has its own merits for both syntactical and se-
mantical study of formal systems. (See, e.g., Kreisel [13, 14], Prawitz
[25, 26], Zucker [39], Takeuti [38] and Smullyan [35]) In this paper,
however, we take the standpoint of _Iegarding‘ that Gentzen-type sequential
formulation is best fitted for the Kripke-type semantical study of formal
systems. We have slightly modified the notion of a sequent in order
to establish the natural correspondence between Gentzen systefns and
Kripke models. ILe., we define a sequent as a pair of two (possibly

i
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infinite) sets of well formed formulas.
Though our method is general enough to admit applications to, for

- example, intermediate logics and other modal calculi, we will, in this

paper, only concentrate on three modal systems. KT3, KT4 and KT5
of knowledge as introduced by McCarthy [21, 22]. However, since

" these systems are generalizations of bi-modal logics S4-T, 84-S4 and

$5-S5, which in turn are generalizations of T, S4 and S5, our results
apply directly to these modal calculi. In fact, we have so designed the
languages that our argument will always be relative to a particular
choice of the language, and’ that by a suitable choice of the language

- we will be able to obtain the specific result for-any one of these logics.

We leave applications of our method to other logics to the interested
reader. : ‘ '

There are many known proof-techniques of completeness results. See,

‘e.g.,. Godel [6], Henkin [10], Takahashi [37], Fitting-[3], Smullyan

[35], Kripke [15, 16],7 Lemmon-Scott [18], Segerberg [34], Schiitte [31]
and Maechara [20]: In the present paper, we prove the completeness
theorem in two different ways. The first one is the so-called Henkin-
style proof. However, our proof is new in that it is relative to a set Q
of wifs which is closed under subformulas, so that we can at the -same

- time prove compactness by letting 2 to be the 'whole set of wifs and
- -decidability by letting @ to be the set of subformulas of a certain formu-

la. Our second proof is based on cut-free formulations of the systems.
Especially, a cut-free system for S5 is obtainéd by a close inspection of

“the first proof. The cut-climination theorem of these systems yields our
. second proof of the decidability’ of KT3, KT4 and' 85. For KT3 and
KT4, it also gives a proof of the disjunction property of these logics.

As we mentioned above, in our first proof of the completeness theo-

~ rem, we construct a ‘model U(Q)," called the universal model over £,
for any Q which is closed under subformulas. - By means. of this funda-

mental ‘model, -we will define a category #(Q) of Kripke-type models
over Q. In this category, U(Q) will be characterized as ‘‘the” terminal

- object of the category. ‘The classification problem of “models will also
" be conveniently treated in this category.- For the modal logic S5, we

can obtain' a complete classification of models. - This result easily shows
the normal form theorem for S5, and the structure of Lindenbaum
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algebra of 85 will also be determined:

We now briefly sketch the content of each chapter. .

In. Chapter 1, we.first define the languages upon. which our. formal

. systems. .will be built. The: main reason for introducing many languages
rather than a single language is that we can explain the  difference be-
tween certain logics (such as S4 and "84-T) as the mere difference of
languages. We  then define Hilbert-type axiomatizations of the three
modal  systems KT3, KT4 and KT5. Corresponding to .these, three
equivalent Gentzen-type sequential systems GT3, GT4 and GT5 will be
defined. Though our notion of a sequent admits an infinite set of wils
both in the antecedent and in the succedent, a theorem to the effect
that this generalization is superficial will be proved.. Nevertheless, the
importance of the generalization will be fully exhibited in the subsequent
chapters. : e : . : :
In Chapter 2, ‘we introduce a topology, which is homeomorphic. to
- Seott’s Pw topology, .on 2¥f, where WIT is the set of wifs. Several
syntactic. notions concerning deducibility - will . be expressed in topological
terminology.. .. .. - .- SRR

In Chapter 3, we: deﬁne the Kripke-type semantics for KTI (:-"
4,:5). - Two completeness proofs will be given there. Compaciness,
decidability and cut-elimination theorem will be proved as by-products.
The. first ‘completeness proof furnishes us with a basis for subsequent
studies, while the importance of the second proof lies in giving,cut—free
‘systems- as by-products, -

. Chapter 4 is devoted to the. category theory of Krlpke models In
contrast to. the .notion of p-morphism- due to' Segerberg [34], which. is
defined by referring to the relational structure of models, our notion: of
homomorphism is defined without any explicit. reference to the relational
structure of models. Roughly speaking, we define an (£2-) homomorphism
as.a mapping which preserves the semantics in U{Q) of a model, Thus
for each €, we . obtain a. distinct category #7(Q). In case @ is equal to
WIE, our notion of homomorphism contains the notion. of ‘p-morphism.

In - Chapter .5, we _study the modal calculus 85 as an application of
the results obtained in- Chapter 4. - A complete ‘classification of 85 models
under a . certain -equivalence relation on models will be given. Our
method gives another proof of normal form theorems by Itoh [12] and
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the result of Bass [1] which detefmines the Lindenbaum algebra of S5
with finite generators. e
The final chapter, Chapter 6 is’ devoted to the study of two well-

‘known puzzles, the puzzle of wise men and. the puzzle of unfaithful wives.
It .was-McCarthy. [21]- who first .attacked. these. puzzles in. a formal man-

. The- second. puzzle, however, remamed almost-. untouched . The
difficulties which arise in the formal presentation of the.puzzle are two-
fold.  Firstly, the puzzle involves the self-referential. statements. . Secondly,

the totality. of .one’s knowledge is difficult to- characterize.. .We wlll present
a. solution which we think successfully gets.over these dlfﬁcultles The

notion of knowledge set and knowledge base to be defined in. thls _chapter
will play an important role in characterizing the totality of one’s knowl-
edge. A model-theoretic solution of the p_u__zzle of wise men will also be
given there. T o

Chapter 1 . AT
The Formal Systems ST 4N
1.1. Basic Language L

The basic language L is a triple (Pr, Sp, N¥), ‘where ’

...;'. : A *‘ Lo- Pr:Pl’ Pz;-".;
SP=SO$ S]::
N*=1,2

are denumerable sequence$ of distmct symbols N+ is the set of numer-
als denoting the corresponding posmve mtegers But, for s1mphclty, we
will identify n with the integer n. SoeSp will also be denoted by
and will be called “FOOL.”

1) iauguages
*" A'ldnguage L is -a.-t_rip-le (Pr, Sp,T) 'vtrheré

PrePr; i
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Sp=Sp;
T =N*,

Elements in Pr, Sp and T denote. propositional variables, persons and
time, respectiveiy. Our arguments henceforth ‘will, unless stated other-
wise, always be relative to a language L. So the reader may choose any
language he likes and read the following by fixing his favorite language.
For example, if he is only interested in the classical propositional cal-
culus, he should take L=(Pr,@,d).. When an: explicit mention of
the language L to be considered is necessary, we will express it by
explicitly writing L somewhere as a suffix etc.

1.3. Well Formed Formulas

The set of well formed formulas is defined to be the least set Wi
such that:

(W1) LeWf;

(W2) PrcWii;

(W3) «, B Wff implies >aff e WH;

(W4) SeSp,teT, ae WIT implies Stoce Wi

The symbols L and = denote “false” and “‘implication™, respectively.
We will make use of the following abbreviations:

a>f=>af read ““o implies g”

—oa=a> L read “not o -

T="1 read ‘“‘true”

avf="1a58 read “a or §”

aaf="1(e>1p) read *'« and B”

[StJe=Sto read ““S knows a at time ¢ -
<St>a="1[St]« read *‘o is possible for S at time ¢”

{Stla=[Stlav[SlTa read “‘S knows whether « at time ¢’

Remark. If L is the simplest language (@, @, ¥), the conditions
(W2) and (W4) in the definition of Wif become vacuous, so that we have
Wi={Ll, Lol, 1>5(l>sL),(l>L)>l,.}. We will not repeat this

p ,‘.J_’.?&G%’-ﬁi}.\‘"
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* sort of remarks in the sequel. However, the reader should always be
alert and notice that the definitions or proofs may become simpler for
a particular choice of L. We also remark that the cardinality of WE
is w 1rrespect1ve of L.

- For any oceWﬂ‘ we define Sub(cx)t:Wif 1nduct1ve1y as follows

(S1) aePru{i}=Sub(x)= {a},
(82) a=pf>y=>Sub(x)={c} USub(fuSub(y);
(83) a=[St]f= Sub(x)={a} U Sub(p). '

We say B is a subformula of « if feSub(x). .

1.4. Hilbert-type Systems

We now define three modal systems KT3, KT4 and KT5 of knowl-
edge due to McCarthy [22]. We begin with the definition of K'T3.
The axiom schemata for KT3 are:

(Al) TTase

(A2) oo(fiow)

(A3) (@=(B21)>(«= B («=p)

(Ad) [St]ase

(AS) [OfJu=[Ot][Sflx

(A6) [St](x>f)=>([SuJe=[Sulf), where t<u 1)

In (A1)-(A6), «, B,y denote arbitrary wifs, S denotes arbltrary ele-
ment in' Sp, and ¢, u denote arbitrary elements in T
The notion of a proof in XT3 is defined by:

Definition 11. Let xeWf. A finite sequence of wifs Cppenes Oy
(n>1) is a proof of @ in KT3 if ¢,=u and for each i one of the follow-
ing three conditions holds:

{1) o is an instance of (A~A6) = S
(ii) there exist j, k<i such that a=a;20; (In th:s case, we say o is
obtamed from «; and «;ow; by modus ponens.)

1} < denotes the usual ordering of natural numbers, -



i

388 - . MASAHIKO SATO

(iii)* there exists j<i such that «=[Sf]o; for some SeSp. and teT
(In this case; we say [Sf]e; is obtained from o; by ([Sf]-) necessita-
tion.) : o0 T DR

We write (o if there exists a proof of «. When we wish to ehlpha-
size that it is a proof in KT3, we write o (in KT3). Furthermore, for
any F'WHf we write I' o Jf }-,81:092:( :(ﬁm:a) D for some Bis-..
bnerl.

It is easy to show the foIIowmg

Lemma 1.2. Let KT3* be the logical system obtained from KT3
by replacing (A6} by the following two axiom schemata:

(%) [Stle=[Sula, where t<u
(##) [Stlxa[St]{u=p=[St]f

Then KT3 aﬁd KT3* are gqu,ibalén_t. f.‘e.', for any -oie_Wﬂ'l,
o (in KT3) iff I~o (n KT3%),

where the notion of a proof in KT3* is defined szmllarly as in Defini-
tion 1.1, ‘

Now, KT4 is defined to be the system obtamed from KT3 by adding
the following ’ :

(A?) [S t]cx: [S¢] [St]x

This axiom w111 be referred to as the posnme mtrospectwe axiom.
KT5 is obtained by adjcumng the following

(A8)  [Stle=[St][St]e
This axiom will be called the negative ‘introspective axiom.

Remarks.
(1) Axioms (A1)-(A3) give an amomatlzatmn of classical propositional
calculus., (See, e.g., Lyndon [19]) Axxorns (A4)—(A6) may be 1ntu1t1vely
understood as follows.

(Ad): What is known is .true. . .
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(A5): What FOOL knows at time .z, FOOL knows at- time ¢ that
"+~ everyone knows it at time . Teeoa T
. (A6): The meaning of (A6) is’ better explained in terms :of. (*) and
% U(x#) in Lemma 1.2. e : : ' :
(*): What is known remains to be known.
(#+):* Everybody can do modus: ponens.
@ If Sp contains O, the condition (iii) of Definition - 11 may be re-
stricted to: Infer [Of]a from «.
(3) The relation of the systems KTi to the other modal systems may be
illustrated as below. We do not include Hintikka’s knowledge system

“:[11] in the following figure. - However, we note that it is a special case
'of K4 with the language so restricted as.not to contain 0 in Sp .For

KT5

KT3

84-T
: |T]=1
[Spl=2 - '
|5p|=1 . Spa0
Sp=@ ATl=1- _ _‘_]T]=1 .

. 17I=t ‘ e
S Fig, 1.1. Relation of KT/ to other modal logics

In the above diagram, K3, K4 and K5 are the systéms in McCarthy
[21], Sato [30], and PC denotes the classical -propositional - calculus.
The restrictions imposed on the language to obtain a desired logical sys-
tem is shown below the name of the system. Furthermore, .an  arrow
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" A—>B indicates that 4 is a subsystem of B. For éxample, the modal

system S4 is obtained from KT4 by restricting Sp and T to be singleton
sets. - The systems on the same vertical line are arranged according to
their deductive power. Thus, for example,- anything, provable in 5S4
is provable in S5.. . :

(4) Hayashi [8] has pointed out that KT3+(A8) is. a!ready equivalent to
KT5 (=KT3+(AT)+(A8)). .

1.5. Gentzen-type Systems '

We now define Gentzen-type systems GT: (:—3 4 5)2) whlch are
equivalent to KTi. By a sequent we will mean an element in the set
2WI 5 QWL Namely, it is a pair of (possibly infinite) sets K of wifs,
Note that our notion of a sequent differs from the original one due to
Gentzen [4]-~at_least in the following points. Gentzen defines a sequent
as a finite figure of the-form dy,..., %y—>Pys..., B, While we define a se-
quent more abstractly and admits infinite- sets_of wffs

In order to match with Gentzen’s notation, we W111 denote a sequent
by 'S4 rather than by (I, 4), where I', ACWf. Like this, subsets of
Wi will be denoted by Greek capltals Furthermore, we will employ the
abbrewatzons such as: :

: -4, lI= 1"->AUH ’
" FB~+-—{0¢}UI‘U{}5’}—>®

Thus, for example, o, f—=y,0,7, f,0-8,8,9 and oc, o, ﬁ -7y, ¢ denote
the same sequent ({«, B}, {y, 6}). . -
We will also use the following notation:

(1) Iy—dosl—A4 iff TocI' and Ad,c4. (In this case, we say
o4y is a restriction of I'->4, or I'»4 is an extension of
Fo—)-Ao.)'l 4 . '

(2) I'pel iff I'ocl and I is finite. .

- (3), Lomdgel—A i I'y€l and 4€4. -

* 2)Our ..definitions .of *GTi. are motivated by . Ohnishi-Matsumoto .[24].
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Now, we give the definition of GT3.

Axioms: o—o

1l
" Rules: r—4
- —_— {extension)
o,r—-4,z :
I'sA,00 o, II—Z
{cut)
r,hn—-A4,x
I'-A,a B,II-X
(=—)
aesf, I I-4,2
e, '= 4, 8
—  (=>)
Fo4,ao8 :
o, ' A
— ([S1]-)
[St]e, T4 n
I, [Ou]ll-a

(—u, [St])a; where u<t .-
[Su]T, [Ou]T~[St]o

In the above, the rules ([St]—) and (—wu, [Sf]); are rule schemaia,
where § is an arbitrary element in Sp “and t; u. are afbii:fary elements in
T. One may apply the rule (—u, [Sf]); only when u<t. Also in the
above for any I'c Wi, SeSp and teT, [S{JI' denotes the set {[St]«|
oI}, The notion of a proof in GT3 is defined similarly as in Gentzen’s
LK [4]. Note, however, that we allow the sequent'l— as a beginning
sequent. - We write —I'—4 (in GT3) if it is provable in GT3. .

The following inference rules are easily seen to be admissible in GT3:

I'—4
(thinning—)
e, '— 4
(-—)thinning) I

I'-d, a
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e, o0, = A
_— (contraction—)
o, '~ 4 ‘
IF'eA oo
_— {—contraction)
I'—4d, o
Fs o, B, H_)A o
_ (interchange—)
r,p,o -4
I'—4d,a, 8,2 ‘
— {—interchange)
F—A4,8,0,%
s A«
(7
=g, ' 4
o, M= A
(=)
=4, "«

w, [—4 B, =4

(vo)
avf, =4

FsAje -- TI'—A4,8

(=v)
F-d,av§ F—sA4,avp -

a,I>4 B, I-4

. . (A=),
canfB, I—4 an B, -4
T—A,a-  T=4, 8 _
- (—A)
I‘—)A, anf

For example, the following proof figure shows that (v —) is admissible

"~ in GT3:
o, =4
—————  (extension)
o, F—=d, L
—— (=2)
F-sAd,ao 1 B, Ir—

— (:_))f

(o L)of, I'—4
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This means that; in spite of the difference in the definition of a sequent,
every proof figure in (propositional) LK may itself be considered as one
in GT3. ‘

Now, GT4 is obtained from GT3 by 'replacing the rule (—u, [St])s

by the following:

[Su]@, [Oull—a

(—u, [Sr]),, where u<¢
[SulT, [Ou] I —~[Sd]a

GT5 is obtained from GT4 by chang'ing the rule (—u, [St]), to:

[Sull, [OulI—[OulZX, [Sul4d, «

(_’u, [St])Ss
[Sulr, [Ou]lO—-[Ou]ZX, [Suld, [St]«

where, u<t

1.6.. Seme Metatheorems

Let us call a sequent I'—»A finite if both I' and A are finite. Then
the following lemma is easily obtained. :

Lemma 1.3. If a finite sequent I'>A is provable (in GTi) then
each sequent occurring in any proof of I'—4 is finite.

Theorem 14, If +I'—A (in KTi) then there exist some TIg @F
and Ay €A such that =Ty—Ay (in KTi).

Proof. By induction on the number n of sequents occurring in. the
proof of I'—4. 7 '
(n=1): Since I'»4 is a beginning sequent, I'—>4 itself is finite.
(n>1): Welr consider the case that the last (i.e., dowﬁmost) .inference is
(2—). -The proof then is of the form: '

. .
- 1 -

. e
LR

. II—+Z-', o B, 45—>i¥’

(=)

e f, 0, X,
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By induction hypothesis, we have finite II,, Zo, P, ¥y such that

.
ot
.

Iy~ X,

_— (extension) and
-2 a
DoV,
—_— (extension)
B, @ -¥

Then we construct the foliowing proof figure,

Ho_tzo ¢O__)EP-O

o= Zy—oa, o B, &y —B-¥,

= f, Iy, Pg—pfo>Zy—a, ¥y

asf, I, ¢ - IV

We see that a>p, I, §,—f->Z,—«, ¥, serves as the desired sequent.

Other cases may be dealt with similarly.

Theorem 1.5. For any oacWil, o (fn KTi) if and only if +-u
(in GTi).

Proof. We only prove the case i=35,
Proof of only if part: Left to the reader.

"Proof of if part: We prove that if a finite sequent I'—4 is provable in

GT5 then TAgA--Aq,28v--vf,v.l is provable in KT5, where
Zyyeers Oy (Biseens Bo) s any enumeration of I'(4, resp.) with possible repe-
titions, First note that (TAgA-AgD2B v v vL)o(TAajA A
ap>fivevfyvl) is provable in KT5 if {ot1seeey Oy = {ath,..., 0} and
{Bis-s Buy={B1s.-s Byt The proof is carried out by induction on the
construction of the proof. We only deal with the rules ([S{]—)
and (—u, [Sf])s. Suppose [Sfe, ¢q,--y %= Fise.., §y 15 obtained from
Oy Oyguuns Oy f1,..s f, by an application of ({St]—). Then by induc-
tion hypothesis, (T AgAa A Ad)2(f v -v B, v1) (in KT5). Since

D o R AR
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F[Sflase, we have ~(TA[SHleAw A AG)D(TALARL A Aly).
Hence, HT ALSaAa A AL DBy Vv BV 1). Next, suppose
[St]ey,..., [Stlo, [Oyy,. .., [Ot]y,—[01164,..., [Of]5,, [St1Bys--.» [SE1B,, [Sule

is obtained from [St]ey,..., [St1otm, [0t]yy,..., [Of)y,—+[0£19y,..., [0£16,
_ [St1By,..., [St1B.» & by an application of. (—u, [St])s. By induction

hypothesis,
() T AISa A ATSDa A [0y A ATORYS
([Or]alv-uv@:]é,,v[S:jﬁIv-’--vLSt]ﬁ,,v NG
Noting that . |
HISA@=AH=([SHeolSAH
S L .
ISy A - ALSHo D[St (6 A Ady)
we have from (1), by ne;gssitatic;n';nd above,
| =T ALS [Sfial pooe A LSSt A [S Oy A -~ A
[St] {0:1{; ALSHALO6, A ATSHA[OF16, A

[SE]m[St1B, A - A [SE][SE]B, =[St

Since
[St]oy = [S1][Stley;,
[0ty = [Se]1 L0y,
016> [S] 0415,
‘and ,I
- =[S0,>[SASA,
U e

=T ALSoy A ALSHe, ATOy A A [0y,
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C[O0t]6, v - v [O-t]éqv [S18, VeV [8£18,, v [Stlev L;

which was tb be proVed.,' "

Corollary 16 Let r CWE and cerﬁ‘ Then Fl—oc (m KT;)
lf ‘and only if —I'>a (in GTi). : :

Proof. Only if part: By definition,. I'+a Imphes the existence of
some f,,..., f,el’ such that +B,2(B,2-(B,20)-). Hence HB,,..., 8,
—a. By (extensmn) we have HTI—o - . 1 :

If part: By Lemma 1.4, there exist some ﬁl, ﬁ,, such that B By
—>a. Hence F—f,2(8,2-(f,2x)-). By Theorem 1.5, f,>(8,--
=>{f,2a)---), This means [ o

For any FeWff, we let “wI'={"elecl}. The following lemma is
easy to ascertain.

Lemma 1.7. 7
_ I—F—»A  (in GTi)
,z_ﬁf |——>/_1 ar (i GT)

iff I——|A F". . (nGTH.,

Chapter 2
Topology on 2V -

Scott [33] has introduced Pew- as-a ‘model - for type-free lamda cal-
culus. Tt is also designed as a universal domain of computation. In
this chapter we introduce a topology on 2%ff which is homeomorphic
to Pw topology. We then show that several syntactical properties - of
our logical systems may be conveniently expressed in terms of topological
languages. The result in 'thié'cﬁétl;ter tells us the naturalness of consider-

ing infinite sequents. This chapter is independent of the remaining
chapters. :

+
et EEL Y

T T
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2.1. Definition of Topology

We now ! define -a topology on 2%7. For any finite I'cWi, we
put Up={de2Vi[Fc4d}.. {Ur!F:iﬁnite} " forms “d”basis of open sets.
Ie, X<2¥F js. by deﬁriitfon, open if and only if it may be written as
a union of some Ups. Since Wi is a‘denumerable set it is clear that
under this topology 2%ff is homeomorphic to Scott’s Pw. Following
Scott, we write T for Wi and L for the empty set Q, since these are
top and bottom elements of the Boolean lattice 2% (under the inclu-
sionship (&) ordering). We define several functions on 2W¥ff as follows.

(1) not: 2V —— W

is defined by:

not(:l")-—;i—l F
@ . isinconsistent?: 2M(——2Vr
js drerﬁned_b_y: | o . .
SR (7 GTeLl Gn KT)
. _isinconsis_t,cntf-(l“ )-—.—[. o ‘

| (otherwise),'
where i=3,4,5.

® - istheorem,; 2% — 2¥t
is defined by:

T (f toy v va, (in KTi) for some {«,...,
istheorem,(I)= e )
L {(otherwise)

@ DC;; 2% — 29T (deductive closure)
is defined by:

DCN)=I'={ail o . (i'i'{; KTi)).

3) We will abbreviate this to isincons,. '
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() isprovable;: 2WIf x 2WIE ___, Jwre
is defined by:
[T Gf GTirT —4):

ispfdvablai(F—a A)=1 - : : _
1 (otherwise)

w .. left: 2WE » QWEE ___, JWIf

is defined by:

left(F—A)=—14UT.

%) © right: 2WIT QW owie
is defined by:

right(I' = A)=Au I

2.2, Topological Characterization of ‘Syntactical Properties

2%, with the above topology, is a continuous lattice in the sense
of Scott [32], and so.is 2Wfx2WIf with produet topology. Then the
functions defined in 2.1 are all continuous functions. More precisely,
we have the following: ' 'J

Theorem 2.1. The following diagrams are commutative in the
category of continuous lattices with continuous maps. '

2WIE
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2 Wit

. hot

bey

WSS

Proof. Commutativity follows from results in 1.6. Continuity is
~ also immediate. For example,

isprovable,(I"' + 4)=\/{isprovable,(I"y - )|y € I'}
' =\J{isprovable(I" = 4,)[4, € 4}

by Lemma 1.4. Then by definition in -Scott [33], we see isprovable;
is continuous. '

-The following result is also straightforwétd. For the definition of
retracts and the least fixed point operator Y, we refer to Scoft [33].

Theorem 2.2.

(1) istheorem,, isinconsistent; and DC, are retracts.
@ Y(DC) is equal to the set of theorems in KTi.

Remark. Theorem 1.4 is equivalent to the continuity of isprovable;.
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Ch_gp_t/ef}/:’nk '
Kripkéfype Semaﬁtics
3.1 Deﬁmtlon of Knpke-type Models

Let W be any nonvoid set” (of posszble worlds). A model M on W

is a triple
<W;rv>,
where
r: Sp xT—-—> 2“;‘_"“’
and - |

v PrU {1} —2%.
Given any model M, we define a rélla:fion 5: c W x Wil as follows:

(E1) If wePry{l} then wiko iff wev()

'(EZ) If a=f>y then wi=a iff not wkf or wkEy

(E3) If a=[St]f then wio iff for all w'e W such that (w, w)er(S,
D, Wi

We will write “wi=¢ (in M) if we wish to make M explicit. An
informal meaning of (E3) is that- [St]e-is true in w if and only if «
‘is true in any world _accessible to S at time ¢ from w. A formula «
is said to be valid in M, denoted by MEa, if wi=a for all weM. (By
weM, we of course mean we W) We will write w—St»w' instead of
(w, w)er(S, f) when r is understood Furthcrmore we will employ
the’follp_wmg notations: - '

wi I (read “‘w realizes ™ iff wea for all ael

wee iff not wka

w=T iff w=a for all oceF . :

w=I'— 4 (read “w realizes F—->A”) iff wt::F and w:IA
Cwel-> A iff not. ws L= 4 - ’
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MEel—Aiff weI' - 4 for all weM

A model M is a KT3-model if

1) #l)=0

(M2) r(0,.)=2r(S, £) for any SeSp and teT

(M3) (S, #)=2r(S, £) for any SeSp and u, te T such that u<t
(M4) (S, 1) is a reflexive relation for any SeSp and teT
(M5) (0, H)is a transitive relation for any teT

A model M is a KT4-model if it satisfies (M1)-(M3) and

(M6) (S, is a reflexive and transitive relation” for any SeSp and
teT

A model M is a KT5-model if it satisfies (M1)-(M3) and-

(M7) r(S, 1) is an equivalence relation for any SeSp and teT

"32. Soundness of KTi-models =

We now wish to show that each formula provable in KTi is. valid
in any KTi-model. First we prepare some terminology. We say I‘—rA
is i-provable (i-comsistent, resp.) if it is provable (unprovable, resp.) in
GTi. We say I'»A4 is i-realizable if there exists some KTi-model M
and weM such that w=I'»A. I'—A is said to be i-valid if it is not
i-realizable.

Theorem 3.1 (Soundness Theorem). Any i-pfouable sequent is
t-valid. ' ' ' . T

Proof. The proof is by induction on the construction of a proof
of the given sequent. That any beginning sequent is i-valid is immediate
from the definition. As for the .inference rules,  we- omly treat {(—u,
[St])s of GTS, since other cases are either similar or easier. So, con-
sider: ) :

[Su]l, [Ou] T [0u1Z; [Suld, «
[Sull, [Ou]l~[Ou]Z, [Suld, [St]es-
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where u<t,

By induction hypothesis, the upper sequent is 5-valid. Suppose, for the
sake of contradiction, that the lower sequent is not 5-va11d Then there
exist some KT5-model M and we M such that

w= [Sull, [0u]ﬂ->[0u]z, [Su}A,'[St]oc;
This implies w=[Si]x. chce for some w such that w S, W,
) L w =l |
holds. Since u<t, we have
@ wSE, W
by (M3). Then, we have
3) o WO,y

by (M2). Let fel and take any w” such that w' -5, w". Since r(S, u)
is transitive by (M7), we have w-S4, w". Since wE[Sulf, we have
w'=f. This means w'j=[Su]f by (E3). Hence

@ WIS

Next take ‘any B in 4. Then, since w={[Su]f there exists some w"
such that

s

) w S,

Since r(S %) is an equwalence relation we have w' -S%, w" from (2) and
(5). Hence, w'=[Su]B by (E3), so that '

) |  w4[Sud.
~ From (3) we obtain, similarly as above, -
O W =[0I,
® . wHLOulz.
(1), (@), (6), (7) and (8) means

W T

-
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w S [Su]l, [Oulll — [0u]Z, {Suld, e.
This is a contradiction.
Corollary 3.2. If o (in KTi) then M=« for any KTi-model M.

Coroilary 3.3 (Consistency of KTi and GTi). The empty sequent —
is not provable in GTi. o )

3.3, Compietenéss of KTi-models

We begin by a .syntacticaZI result, which is a kind of Lindenbaum’s
Lemma.

Lemma 34. Let be that wI'—A4 (n GTi) and ®2IUd. Then
there exist [, A such that

(i) wI'->4 (in GTi)
(ii) F'-»Ad2r-—4
@iy Fud=0

Proof. Let a: N*—>& be a surjection. We write- o, for «(i). We
define I',—4, (n>0) as follows: ’ ‘

Fn_”Am Ont1 (lf }‘rn'_) Am “n-l—l)
Fyey 2 = o
Opy1, Iy~+ 4, (otherwise)

We show by induction that w~I',—4,(n>0). The case n=0 is verified
by the assumption of the lemma. Consider the case n=m4-1, and sup-
pose tIpyi—d,4y. Then, by the definition of Iy —+dpy;, we have
LA, sy a0 oty q, Dy—d,. From these we obtain HI',—4,
by (cut), which contradicts the induction hypothesis, o :
Now we put -4 ="('=_°{) F"",.QA"' Then we have I'—»A=I-4
and F'uA=@®. What remains to be shown is that [—A is i-consistent.
Suppose the conirary. Then by Lemma 14, we have I"'—-A’ el=4

such that |-I'—=A'. Now, let N=max{n(f)|fel'u A"}, where n(f)
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=min {i|f=e;}. Then we have I"UA'SI'yUdy. - We prove I'cIy.
Suppose a;el” and o;ly. Then we have o;el’ and o;edycA. But
FnA=@. This proves I'cly. Similarly, A'c4y. Since |I'—4’,
we have —I'y—4y, which is a cont:é.diction.

A set @ of wils is said to be closed under subformulas if LeQ

and Sub(a)=Q for all xeQ. Now take aﬁy such @ and fix it. We

say a sequent I'= A is Q, i-complete if I'-+4 is i-consistent and I ud=g.
We denote by Ci(@Q) the set of all Q, i-complete sequents. Le.,

C{Q={I'>A'ud=Q,I' > 4 is i-consistent}.

We observe that "'nd=@ since '>4 is i-comsistent. For any I'cWH,

SeSp and teT, we put I's={¢|[Stlael}. We now define the universal

model U()=<U; R, V> over 2 as follows. (Since our definition will
depend on the logical system KTi, we will call U(Q) the Q, i-universal
model when necessary, and will denote it as U,(Q).)

1) U=C(2)

@ V(={'—=>AeUlnel}, where e Pru{l}

(B) Let w=I'=2AecU,w="->4cU. . : ‘
(i=3): (w, w)eR(S, ) iff I's,=I"” and I'p,cI, for any u<t.
(i=4): (w, wheR(S, ) iff I's,=I'y, and 'y, &1, for any u<t.
@(i=5): (w, wYeR(S, ) iff I's,=T%, and Iy, =Tp, for any u<t.

Tl

Lemma 3.5. ‘U}(Q') is '@ KTi-model.

Proof. First, since lef and t~—L1 (Corollary 3.3), Lemma 3.4
assures us that U=C(Q)#@. :
(i=3): '
{M1) Suppose w=I'—-4eV(l). Then' Lel. Since Ll-, we have

~-I'—4, which is a contradiction. Hence V(L1)=8@.

(M2), (M3) are immediate from the definition of R.

(M4) Let w=I'-AeU. Suppose u<t and take any wnelg, Since
[Suloeel and Q is closed under subformulas, we have ael' U 4. Suppose
eeA. ‘Then, since [Sujx—ea, we have —I'—A, which is. a contradic-
tion. Hence aeI'. This proves I's,=I'. Since I'g, =Ty, we see R(S, 1)




KRIPKE-TYPE MODELS FOR SoMe MopaL Locics ‘405

‘is reflexive. .
(M35) Let (I'—4, F’—»A’), (I"'—4', T"=4"eR(0, ). Suppose u<t. Then
© since g, clp, =T, we have I'p,=Tp,. We can prove I'p, &I as in
the proof of (M4), whence Ip,<I”. Thus weé see R(O, t) is transitive.
‘-The cases (i=4) and (i=>5) are now easily seen. ’ :

The following theorem will play a key role in the subsequent studies.

Theorem 3.6 (Fundamental Theorem of Universal Model). For
any wcQ and w=I—-AcU(Q), wEea (n UtQ)) if eel’ and wHa (in
U2 if wed. o ' '

‘ Proof. By induction on the construction . of " formulas.

| (8] ..OCEP?‘ U‘{.l'.}: “Immediate from the definition of R. .

(2} a=finy: Suppose oael. We must show that w8 or wky.
Suppose, by way of contradiction, that wi=f§ and w=y. " Then, by induc-
tion hypothe51s we have fel’ and ye4. Since I—B =y (m GTi),
we have T -4 (m GT;) a contrad1ctxon Suppose now . ocEA -We
can prove wikff and w=ly, similarly.

() -a=[Sr]f: Suppose ael and take any w'=I"—4" such that w5,
w'. ‘We show pel”. First, we consider the case i=3. Since felgcl”
" we have fel”. Next, we treat the case i=4,5. -We have [gclgcl”
(see the proof of (M4) in Lemma 3.5). Hence fel”. Thus we see
wg[St]f=a.

" Now suppose ocd.

(i=3): The sequent {[‘_Su]yeflu<t} {[Ou]yef[ugt}—aﬁ[St]B is 3-
consistent, since it is a restriction of F —A. By (—u, [St])a, we see
{ISulyel, us, {[Ou]yel’]ugt}»ﬁ is also 3- conmstent Since Q is
closed under subformulas, we can extend this sequent to an £, 3-com-
plete sequent w=I'—A4', by Llemma-_3.4._ Then fc_)r any u<t, we have
Is,=I" and Ty,clp, Therefore, we have w' St w'.. Since fed’, b
1nduct10n hypothems, we have W "= B. Hence w=1[Su]ﬁ o
- (1=4). Similar to the case (:-—3)

(i=5): Since {[Su]yEF|u<r} {[Ou]yeF[uSt}A{[Ou]y eA]u<t}
{[Sulyedlu<t}, [Sf]p is S-consistent as a restriction of I'+4, we see
{[Sulyelu<t}, {[Oulyelu<t}={[Oulyedju<t}, {[Sulye dlu<id}, § is
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also 5-consistent. Take an £, 5-complete extension w'=I"—4’ of this
sequent. Clearly, for any u<t, we have Ig, ST, 45,45, oSG,
and Ap,&A4p,. We have Ig =TI, because I, &I@g,=8,— A5, SR~
Adg,=Tg, Similarly, we have I'p,=Ij, By virtue of the definition of
R, we have w —EL,w'. Since fed’, we have by .induction hypothesis

‘w'= B, which proves w3 [St]f=0.

From this theorem we at once have the following results.

Theorem 3.7 (Generdlized Completeness Theorem). Any i-consistent
sequent is i-realizable,

Proof. Let an i-consistent sequent I'-»A4 be given. We put Q
={L}u\{Sub(wael'Ud}. We construct the @, i-universal model
U{£2). Then by Lemma 3.4 and Theorem 3.6, ther¢ exists weU such

that wI'»4.

| ‘Corollary 3.8. (Compactness Theorem). - Let P'csWf. Then, I' is

i-realizable if and only if any I'y€TI is i-realizable.

Theorem 3.9. (Completeness and Decidability Theorem). For any
we Wi, 2 is a theorem of KTi if and only if o is valid in all KTi-

models whose cardinality <2", where n. is the cardinality of the finite

set Sub() U {1}

Proof. Let @=Sub(e)U{Ll}. Then the result easily follows from

Lemma 3.4 and Theorem 3.6.

Remark. Our definition of universal models differs from that of
canonical models due to Lemmon-Scott [18], in the following points.
Firstly, we define models relative to Q, while canonical models are de-
fined only for Q=Wf. So that we need not use filtration method due
to Segerberg [34] to secure decidabi]ity of the systems. Secondly, rela-
tional structures are defined differently. The naturalness of universal
models will become clear in the next chapter, o '
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34. Cut-free System for S5 -

In this and next §§, we give our second proof of c_orﬁpleteness. It
is based on cut-free formulations of the sysfems, “and- in -this section we
first formulate a, cut-free system GS5 which. is equivalent to GTS with
the language restricted to ASp|=]T|=1. Hence GS5 'is a cut-free system
for the modal calculus 'S5, In GSS5, a sequent is defined to be an ele-
ment of the Sset 2WITx WPy DWIE o OWIT  Thys a sequent is of the
form (I', I1, £, 4). However we denote this as I'; II—Z; 4.~ Further we
will denote I'; =; A (={(T, @, @, A)) simply as I'->A4. A sequent of this
form will be called proper. Other sequents will be called improper.
The idea of considering this kind of sequents is due to Sonobe [36].
Since our language is subject to the condition |Sﬁ[=lT|_=1, we will
denote [St]e as [Ja. ‘GS5 is defined as follows: '

Axioms: o¢—o

Rules: r—4
—————  (extension: out)
P44

r; n-x ;4

— . {extension:. im) .
r,mwin-z2zz;4 ' '

IF'—A o oc,‘ﬂ—nZ‘

(cut)
[, O-4,%
Ir; —a; 4 :
L —_— (—exit)
r;- ;0Oa 4 :
I, O«; 0-2;4 .
(enter—)
MO, O 4 .
r;g-z;du, 4 : .
— (—ient'er)r

r,o—x,O«; 4
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F—A, a8 B, -V, a, B, E—-A

(>—: out)
a=f, I'y @, E—ad,¥, A~
o, >4, 8- '
——— " (—»>: ‘out)
I's4A, 608 Lo

T H5E, 0, f;4 T3, 0%, 0:4  Tief,E—dA;d

T;a=8,11, 8, 55, V,4; 4

:_(:—»: in)
IR Y T o0 R . § :
co - N G =T )

r; Hn-Zasf;d

o, o4 .

SE— {(dO—: out)"
e, M= 4 B

Or—-04d, «

—_— {(—»: out)

Or-04, O«

The following lemma shows the equivalence of GS5 with GT5 (over
the language restricted as above).

Lemma 3.10. Let ®—¥ be a proper sequent.. Then +®—¥
(in GTS) if and only if —®-Y¥ (in GS3).

Proof. Only if pai'th: We have only to prove that the rule (5 —+)
in GT5 is admissible in GS5. To see this we construct the following
proof figure:

I'—4,¢ B IO~I B, I-%

I'-Ae,f B, HO-Z a0 o f, =2

(o—: out)
a>f, L H-4,% S
If part: Suppose that —&—¥ (in GS5). We -note ‘that -Lemmas 1.3
and 1.4 hold also for GS5. Thén, ) by Lemma 1.4, there exists -,
€d—¥ such that F@,—¥, (in GS5). Let F be a proof figure of &,
—+%,. Then by Lemma 1.3, any sequent occurring in F is finite, where
F; I-Z; 4 is finite if so are I, ﬁ, Z, 4. We convert F: to a proof
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- figure in GT5 whose end-sequent is $o—¥s Let I'; IT=Z; 4 be any
improper sequent occurring in F. We replace this sequent by 'the- proper
sequent I'—d, (o, where a=(T AT A ARV VO,V Ly (I={=,,
L), E={0y., 0)). We do this replacement for all improper se-
. quents in F. 1B'y this replacement, for example, an application of the
rule '

I Qdo;H—-2; 4

(enter—)
' Ooa, d=-2;4

will become

I, Oa—4, O(z20)

€3 '
= A, OaAaroe) ,

where =T Am A=A T (T ={7y,..., My}) and o=01V V.5,V 1 2={os,
ls Gq}).  We change (¥) to the following: ) '

Lo T OO

 Aa—=a . '  m, moe—0
Ce—a, o . QeAn, iS0—0 |
OeaAn—[e, o oo eAr>So
—>E|a,'|:|ocf\1.t:_>cr ‘I“_'[(nza)aljom'n::m'

. _F,‘Da’.—)A,D(EDO’) —[Te, O(OaeAano0) D(n.:a)-a'lj(!:lot/\n::a)

T—A, OsoO(r>0) OeoC(roe)»0O(0OeAn>0)

-4, D([]oc/\n:-ua)'

We must also consider the rules other than (enter—).- But they can
be treated similarly. Therefore we can obtain a proof of -®;—¥, in
GTS5.  From this we obtain a proof of #=%¥ in GT5 by (extension).

We say a sequent is strictly provable (in GSS5) if it is provable in
GS5 without using (cut). A sequent is weakly comsistent if it is not
strictly provable. By Lemma 3.10 and Theorem 3.1, we have
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* Theorem 3.11. If a proper sequent is provable (in GS5) then
it is S-valid. : _

We now. construct a KT5-model M =<W;r, v> which realizes dny
proper weakly ,' consistent sequent. For any «aeWff IWe .put  Subpy(a)
={(1flC0BeSub(x)}. For any finite sequent I'—d, we say I'—d is
saturated if:

(i) I'—= 4 is weakly consistent

(ii) foyeI'u4 implies {8, y}=ru 4
(i) Cfel implies ferl

(ivy [Ofed implies Sub(A)=I' L 4

Lemma 3.12. Let a finite sequent I'—A be weakly consistent.
Then there exists ['—A such that T-A<F-4 and -4 is saturated.

 Proof. Let Q=\U{Sub(e)lecI'UAd}. This is a finite' set. Let €
={lI-%|H-X is weakly consistent and TuZsQ}). C€ is also finite.
We construct a sequence {I,—A,}»0 in € as follows. We put IF'y—4,
=I'24. By "assumption, we have I'y—d,eC. Suppose that I',—4,
C has been defined. -If I,—~4, is saturated, we put I',,; >4, =,—4,.
Suppose’ otherwise. Then one of (ii)~(iv) in the above definition of a
sequent being saturated fails.
(I) Suppose there exists some foyel, U4, such that {f, y}&El, U4,
Suppose fi>yel’,. Then by (o—: out) we have that one of I',—4,,
B,v P Iy=d,, B or By, I',—4, is weakly consistent. We define I,y
—=A,,, as _the first weakly consistent sequent among these three sequents.
In case foyed,, we put F,,+1¥->An+1=ﬁ, Iy—A,, .
(2) Suppose that there exists some [Jferl, such that fe&I,. We put
My =dy =8, I',—A4,. By ((0—: out), we have ' ,—4d,..eC.
(3). Suppose-that there exists some [Jfed, such that Subg(ﬁ)$F,UAu.
Let Oy be an element of the set Subg(f)—(I',U 4,) with maximal degree,
where the degree of a formula is defined to be the number of logical
connectives (i.e., D and [J) occurring in it. Let [J& be an element of
Ir,u4, such that [JyeSub(d) and with minimal degree. The existence
of such (J& is guaranteed by the fact that [JyeSub(f) and [feA4,.
Then we have two cases.
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‘O0éerl,: Since I',»4,=06, I',—4, is weakly consistent, so is 6, T,—4,
by (C]>: out). Then using (> 5: out), (—>: out) and . (extension:
-out), we see, by reductio ad absurdum, that either Oy, I',—4, or I',—4,,
[y is weakly consistent. So, we define. I'y, =4, as the first weakly

consxstent sequent of the two. = = -’ , ‘ ‘ ‘
MNdéed,: Since I',—+A4,=I',—4,, [15 is weakly consistent, so’is. F,,, —ré
4, by (—exit). Then by (= —: in), (—=: in) and (extension: in}, we see
either I'y; 1y~ 4, or I',; ={1y; 4, is weakly consistent. Since the argu-
ment goes similarly, we suppose the first case. Then by (enter—),
I, Cly—4, is weakly consistent. In this case we put Iy, —d,.\=I,,
Oy-4,.

In any of the above three ‘cases, we have F,,H—rdnﬂeC and
[T VA <ITpe i Udyedl Therefore since € is finite, we obtam a satu-

‘rated I,—4, for some n. . Putting F—»4=r,—»4, we have the’des1red

resuit,

We ‘now deﬁne a model M= <W r,v>. Let W= {I“—»AlI"-—)A
is saturated). W is nomempty since —>_LEW Let w= =T-4, w =r

" —A'e W, We define (w, w)er iff I‘D-—FD (Since ]pr Tl=1, we may
“consider r: Spx T—2F*% as an element of 2¥*¥. 5 denotes the set
JolCleel}.) v: Pru{Ll}—2% is defined by that w=I—>dev(a) iff xel.

The following lemma is proved similarly as Lemma 3.5
Lemma 313 Misa KTSmodeI o AERRTECE R
Just like U(Q) M has the followmg important property

Theorem 3.14. Let w=I'—-AeM and vel’U4. Then wkea {(in M)
if el and weo if xed.

" Proof. By ‘induction on fthe- construction of formulas. We only

“consider the case that a=[J}Becd, since other cases may 'be ‘handled
- similarly ‘as 'in-the proof of Theorem 3.6. Now, I'g—d={0yIOyerl}

—{[058|[18 e 4}, P is weakly consistent since it is a restriction of I'—4.

By (—[: out), we see I'—dA,={[Jy0yel}t~»{08|05e4}, B is also
~weakly consistent. By' Lemma 3.12, we can, extend this sequent to a

saturated ‘sequent w'=I'—A'eW. By this construction, it is clear that
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FosTh. Suppose oe I'g—=Ipy. Then by -inspecting. the construction meth-

od- in Lemma 3.12, ‘we see that [JoeSubg(y,) for some y;el’;U4;.

‘Hence, [oeSubg(y,) for some yoelgUdgslud. (If y,=8 then let

yo=[1B ey, ~otherwise. let po=y,.) ~Since =4 is saturated, we  have
Ooelu4. Since o¢I'n we have (Joed. Hence we have. Ooel”nd'.

This contradicts the consistency.of I"—4’.. Thus we se¢ I'm=I(, so.that

(w, w)er. Now since- fed’, we have w'={f by induction hypqthesis.

"Hence we have w=[]B.

It is now easy to estabhsh

~ Theorem 3.15 (Cut-elimination Theorem). If a proper sequent is
provable in GSS then it is strictly provable in GS5.

Proof. By Lemma 1.4 it suffices -to consider “only finite sequents.
We prove the contraposition. Suppose that a finite sequent I'—>4 is not
strictly provable I'>A has a saturated extension F—rA by Lemma 3. 12.
Then I‘—»A is 5-reahzable by Theorem 3.14. Then F——>A is not provable

by Theorem 3 11. Hence T4 is not provable

3.5, . Cut-elimination Theorem for GT3 and GT4

In this section we consider only KT3 and KT4, so that when we
refer to KTi or GTi, i is always 3 or 4. If a sequent I'=4 is provable
in GTi without cut, we say I'—d4 is strictly prov&ble.' We wish to
establish this: ‘ v o

" “Theorem 3:16 (Cut-elimination Theorem). If:‘a sequent is provable
(in GTi) then it is strictly provable. T .

We prove this “by -an- argument- similar to that in-3.3. Let QcWIif

'be closed under subformulas.. Let us call a sequent I'—d @, i-maximal
if it i§ maximal in. the set {II-X|I—-ZX is i-weakly consistent and ITUZX

=Q}, where ‘a sequent is i-weakly consistent if it is not strictly provable
in GTi. We can show that if a sequent is i-weakly. consistent and
ruAc<Q then it "has a maximal extension ['—4eW(Q)={T-AI->Z

is @, i-maximal}, by means of Zorn’s Lemma .and Theorem 1.4. . Now,

PR Bty R
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we see that any linearly ordered subset. Q.of P has cardinality less than
or equal to 227°2"2"2"=m_ Since the number of the upper sequents of
each inference rule is at most 3, it followsj..that

0] IPISS’*;

g By (1) and (2), we can construct an algorithm which determines the. prov-

ability of .

Chapter 4
Categories of Kripke Models®

4.1. Definition of # (2)

Let © be closed under subformulas. Let us take any i(3<i<5)
and fix .it. We define the category 2 {(Q):of KTi-models over Q as
follows: : : (I o

|

(1) Objects (.#) are KTi-models,

(2) Let M, Ne.#, then Hom(M, N)=[M-N] consists of homo-
morphisms (from M to-N) as defined below.

(3) Composition of homomorphisms is defined by the usual function
composition, i.e., (fog)(x) is defined by f(g(x)).

For any Me.#, we define its charaqt_eri_stié Junction
o X M — U(R)

by yu(W)=I—4, where I'={acQwkoa} and A={cecQwa}.- It is clear
that I'-A is Q-complete and hence yx is well-defined. (U(£) means
U(Q) and Q-complete means- ©, -i-complete.) A mapping

hM— N

is a homomorphism (from M to N) if the diagram below commutes:

-

6) Elementary terminology of category theory in this chapter mostly follows Mitchell
[23]. .
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Uy

Informally. speaking, for weM, yy{w) denotes the scene .(re'stricted to )
as seen from w. Thus a homomorphism is 2 mapping which preserves
scenes. It is an easy task to verify that #'(Q) defined above is indeed
a category. As an example, consider the simplest case of 2={1}. Then
any mapping f: M—N is a homomorphism.

4.2. Properties of X'(£2)

First of all; by the Fundamental Theorem of Universal Model, we
see that xyq;: U(@—-U(R) is the identity mapping lye,. Hence, for
any Me.#, by the following commutative diagram we observe that .y
itself is 2 homomorphism.

XM

oy U@

i

X xuy=lumy

UQ)

On the other hand, let he[M’éi.U(Q)].‘ Then since the diagram below
commutes, we have h=1y.

Me— " -;U(Q)r

Thus we obtain:




e
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Theorem 4.1.. U(Q) is a terminal. object") of H().
We now list up several bas1c propertles of .%(Q)

Lemma 42 Iffe [M—>N] IS a monomorphzsm then f is an mjec-

Proof. We prove the contrap031t10n Let x, yeM be such that
x#y and f(x)=f(y). Definé g: M—N by '

(% if 2= y
g2)=( y if z=x
z _otherwise "
Then we have:..
\' =D = IO =10) i 2=y
B@@ = BN =1) i 2=
@ othervise

Hence, ge[M—N]. Now, clearly fog=foly, but g#l,,. ThlS means f
is not a monomorphism, . - .7 -

" Lemma 4.3. If fe [M—»N] is ‘an eplmorphlsm then f is a surfec-
tion. ‘ ‘

' “Proof. We prove the cpntrapoé;ition.- Let N=<W:r v>. Let
xeN be such that xeImage(f). Take y such that y&N. We define
a ‘model N=<W;7 r, 5> such that W= WU{y} as foIlows Let g: W

"—>W be ‘defined by

| x i 2=y 7_
9(2)= i '
z otherwise

We define: F by ‘(w, w)e#S, 1) iff (g(w), g(w)).er(S,H. We define § by

7) Mitchell [23] uses the term nuli object instead of ferminal object,
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wei(p) iff gw)ew(p). It is. easy to verify. that N is a. KTi-model. We
can prove, by induction, that for any we W and «e W,

wia Ga §) iff go0)=a (n N).

Le, gétﬁ—#N].- Let h: N—N be the inclusion rﬁap, and let b': NoN
be defined by: '

y if z=x .
hl(z)='[ h

z otherwise
We have goh=goh'=1y.

f e o~
M — N — N

iN

U(Q)

Then we have

1) = g RN =12

so that he[N-N]. Similarly, W e[N-N]. Now, clearly, hof=h'=f
but h#h'. This means h is not an epimorphism.‘

Remark. The reader familiar with the. notion of p-morphism might
_ have noticed that the homomorphism ¢ in the above proof is a p-
morphism. . By the p-morphism theorem [34], every  p-morphism ig a
homomorphism (for any ), but the converse is not valid. In this sense
our notion of homomorphism is more general than that of p-morphism.
Note also that we defined homomorphisms without referring to the rela-
tional structure of models. o

Lemma 4.4. If fe[M—N] is an epimorphism, f is a retraction.

Proof. By Lemma 4.2, f is onto. Let g: N-M ‘be :any mapping
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such that fog=1y. Let xeN. Then xu(g(x))=C0wes)(@(x)=n(fg(x))
=xy(x), e, Xyeg=xy. Hence ge[N—M]. This means f is a retrac-
tion.

We cite the following easy lemma from Mitchell [23].

Lemma 4.5. If fe[M—-N] is a retraction and also a monomor-
phism, then it is an isomorphism.

By Lemmas 4.4 and 4.5, we have

~ Theorem 4.6. #°(2) is balanced, i.e., every homomorphism which
. is both a monomorphism and an epimorphism is also an isomorphism.

Lemma 4.7. Let Me.#. Then the following conditions -are
equivalent: ' '

(i) yu is a monomorphism

(ii) For any Ne.#, |[[N - M]|<1

(iify End(M)={1,7

(i) Aut(M)={1yg}
where End(M) denotes the endomorphism semigroup of M- and Aut(M)
. denotes the automorphism group of M.

‘Proof. The implications (ij=>(ii)=-(iii)=>(iv) are trivial. To show
(i)=(@), we prove the contrapositibn. Suppose ¥ur is not a monomor-
phism. Then there exist Ne.# and i gg[N.—»,M] ‘such that f#g and
Yo f=Apeog- Take xeN such that FEO#£g(x). We put u=f(x), v=g(x).
We define h: M—>M by: 4 ‘

v if z=u
h(z)= ‘u ifi z=v
z otherwise
It is easy to see that he Aut(M), so that 'lAut(M)['>1.\r

- A model Me.# is said to be reduced if xy is a monomorphism.
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4,3, Structure of 2, (Q2)

Theorem 4.8. Let M=<W;r,v> be any model in .#, and sup-
pose (x, Y)er(S, ). Then (xu(x), xu(¥)€R(S, 1).

Proof (1— 3): Let xu(x)= F—»A and iy = F’—»A’ Suppose, by
way of contradiction, that (xa(x), xu(Y)&R(S, ). Then, by thedefini
tion of R, for some u<t, we have I's,$I" or I'g,$Ip, Suppose
s, &I”. Then there exists an o such that [Suleel and agl ‘. Then
by the Fundamental Theorem of Universal Model, we have xu(x)l=
[Su]e and xu(»)=«. Hence, by the definition of y, we have xF
[Sule and y=a. Since (x, y)er(S, Her(S, u), this is a contradiction.
Next, suppose ', &I%,. Then, similarly as above, for some a we have
xE[0w]e and y=[Oule. Since (x, ¥)er(0,u) and r(O, u) is transitive,
we have a contradiction. S

The cases (i=4) and (i=5) may be treated likewise.

Let M, Ne.#. We write M=N (mon)' if Image (xy)=Image (xx).
(We should write y% (or x%) in place of yu (or xy) if we wish to empha-
size the dependence of y on Q) We say M is equivalent (modulo Q)
to N if M=N (mod Q). Among the models equivalent to M, we will be
interested in finding the simplest one. Let M=<W;r,v>ec.#. We
define its relational closure M=<W:F7, v> by letting (w, w)eF(S, )
iff (taW) xuW) ER(S, ). By the above theorem we see r<F (, ie.,
r(S, (S, t) for any S, t) We can prove by induction that ly: M—~M
is an isomorphism. Thus, 7 is the largest among the relations #»* on W
such that <W; ¢, v> is equivalent to M. We say Me.# is relationally
closed if M=M. Now, let M=<W;r,v> be relationally closed. An
equivalence ~ on W is called a congruence if w~w’ implies Yaw)
=y,(). In this case, we can naturally define its quotient model M|~
=<W;F > by:

(1) W=W|~={[wliweW}.
@ (w1, wDekS, v iff (w, w)er(s, 1)
(3) Let pePru{l}. If peQ then [wled(p) iff weu(p), otherwise
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#(p) is arbitrary

where [w] denotes the equivalence class containing w. It is easy to see
that M/~ is well-defined (up to the arbitrariness of v(p) for psEQ) and
M= M/~ (The canonical map [ 1 M-Mj~ is a p-morphlsm 1f Q
=WIff, and it is a homomorphlsm in any case)

Suppose M, N are relationally closed, and let fe[M —>N] be an ep1-
morphism. Then, ~<MxM defined by w~w" iff f(w)=f(w") is a con-
gruence, and we see M/~ is isomorphic to N. We write this as M If
~N, , _ -

Let Me.#. By definition of xu, xw (=xm) induces the largest con-
gruence among the congruences on M. Hence we have:

Theorem 4.9. For any Me.#, there uniquely (up to isomor-
phism) exists a reduced Ne.# such that M=N. Namely, N is given
by N=M/xy- '

Schematically, we have the following diagram:

incluswn

M Lw, M 20, My 222 U(Q)

‘ Our argument in this chapter has been relative to Q. We end this
-‘chapter by giving a definition which does not depend on Q. Let M
=<W;:r,v> and M'=<W’';r,v'> be two KTi-models. We say M
and M’ are strongly isomorphic if there is a bijection f: M—M’ which
preserves the model structure, i.e., f is a bijection such that

(1) For anyx, ye W, (f(x), f(y)er'(S, B iff (x, y)er(S, 1.

(2) For any pePrU{Ll} and we W, weu(p) iff r(w)ev'(p).

Chapter 5
S5 Model Theory

In this chapter we give a complete classification of S5 models under
the equivalence = (mod Wff). First, we need some general discussions.
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5.1, Lindenbaum Algebra of KTi

Let us define a relation <*CWHExWH by a<*p iff a—pf (in-
GTi). (As usual, we discuss by fixing a logical system KTi) Further-
more, define ~SWHEx WIF by a~f iff a<*f# and f<*a.  <* is reflexive
since a—a <* is transitive since t«¢—f and +f—y implies a—f.
Hence ~ is an equivalence relation. We may regard Wif as an algebra
<Wff; A, v, 7, 2, {[St]|SeSp, te T}>. By the following lemma, we
see that ~ is a congruence on the algebra Wff. (For the definition of
algebra and congrﬁence, we refer to Gritzer [7].) '

Lemma 5.1. Suppose a~o and B~f'. Then,
(i) anB~a Ap

(ii) avf~a'vf

(i) —a~ma

(i) asfi~a'2f ,

(v) [SOa~[Sfle’ (for any SeSp,teT)

Proof. Left to the reader.

By this lemma, one can define the quotient algebra B=<B; A, v,
=1, =, {[St]|1S&Sp, te T}>, where B=Wffj~. We will call this algebra
the Lindenbaum algebra of KTi. Let [ ]: Wif—B denote the canonical
homomorphism. We put I={T] and 0=[1].

Theorem 5.2. <B; A, v, 1,0, 1> is a Boolean algebra.-
Proaf. Left to the reader.

Let <z=BxB denote the partial ordering induced by the Boolean
structure of B, ie., a<gh if and only if a=aAb. Then we can easily
verify that for any o, fe WH, a<*p if and only if [o] <z[B].

We will use the term théory as a synonym for a subset of Wif.
Let I be any theory. We say I' is consistent (or inconsistent) if so is
the sequent I'—». If I'=P=DC(I), we say I is (deductively) closed.
Let C denote the set of all closed theories, ie.,
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. C={r=Wff|l=TI}.

C is the set of fixed points of the retract DC: 2¥>2WE € s pat-
tially ordered by the set inclusionship relation =. We define a mapping
¢: Wif>€ by dle)={x]. We say I' is finitely axiomatizable if I'=(x) '
“for some «= Wi,

Lemma 5.3., Tl <5081 if :and.only 'if ¢(a)2¢(,8). -

Proof. Onmnly if part: By the assumption we have a<*pf. Hence
a—f. Take any neqﬁ(ﬁ):@.' Then +—pf-sr. Hence ku—m, so that
ebn. This means x€ (). -

If part: Suppose ¢()2¢(f).. Since fed(f)=¢(x), we have ab-p, ie,
o—f. Hence [e[<;5[A]- . '

From this lemma we see that there uniquely exists an anti-order
preserving injection ¢: B—C such that the diagram below commutes:

- Wi

B - €

- We note that ¢ is onto iff ¢ is onto. We give a sufficient condition for
" ¢ to be an anti-order.isomorphism.

. Lemma 54.. If B satisfies the descending chain condition, then ¢
is an anti-order isomorphism.

Proof. Let I' be any element in .C. Let o, «,,... be an caumera-
tion of I'. Let f,=;A--Aq, Let med(f,). Then we have f,—m.
Since FI'—ao; (i=1,2,...,n), we have FI'—f,. Hence I'—-=n. This
means mel =I. Therefore,

(1) d(Bn<T.
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Let mel. Then n=«, for some n. Since Hf,—u,, we have n=ga,

e ¢(f,). Hence, together with (1}, we have

@ o =06

‘Since Bri1—B, for any n, we see [B,] > g[Bal =p---. Since B satisfies

descending chain condition, there exists an m such that [B,] <g[B.]
for any n. Then, by Lemma 5.3, we ‘have ¢(8,)=2¢(8,) for any n.
Thus, by (1) and (2), Lo

Q 2402 0 96)=r.

This establishes the surjectivity of ¢ Thus we see that . is an anti-
order isomorphism. '

5.2. 85 Model Theory
For any n>1, we let the language L,=(Pr(n), Sp, T) be defined by:

(1) Pr(m}={pts P2>--s Pu} >
(2) Sp={0},
(3) T={1}.

Let us take any L, and fix it. In this section, we study KT5 over the
language L,, which is none other than the modal calculus S5 as we have
seen in Fig. 1.1. Hence a KT5-model over L, will be called an S5-
modél. Qur- aim is to determine the structure of the Universal Model
U=U(n)=Us(Wff). We employ the more conventional notation [Ju
(©w) in place of [01]x (<01>«, resp.).

et {£}" denote the n-fold cartesian product of the doubleton set
{+, —). For any xe Wff and de{+}={+, —}, we put

o { a - if =+
od=
e if d=—.
We define a mapping

n {E} — W
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by n(e)=pst A - Apin, whére e==g,---g, (g;e{£}). We put I =Image (7).
For any E (#£@)={+}", we define an S5-model M(E)= <Wg; rg, vg>
as follows ‘ '

(1) WE_E % {E},

(2 10, 1)=27=*"=,

(3) For any (¢, E)€ Wy, (¢, Eyeu(p) iff 5=+, where =g, &, and
o(Ly=0. '

Since rE(O, 1) is an equivalence rolation, M(E) is an S5-model. -We call
this model the fragment model on E. We define its characteristic

~ formula y(E) by:

7(E)- A <>n(a)A l A, "t(}'rc(g),s)

}H—
For any (e, Eye M(E), we define its. characterzstw formula x(e, E) by:

x(e, E)= n(ﬁ)Ax(E)
Now, let (M Diea be an indexed farmly of 85- models where M,
=<Wy;r, 0,>. We define their sum

M=<W;rv>= 'ZM,1
}.EA

(H W= 2 W, (disjoint union), .
2) (w, w)er(O 1) iff both w and w' are in W;_ for some A and
(w, w)er, (o, 1), ' ‘
(3) ()= X v:(p).
ied

_-VAn S5-model M= <W r, o> is said to bé connected if O, 1)
=27*W._ It is easy to sec that any SS-modeI M may 'be expressed as
a sum 2 M ; of their connected components (M Dicdr

Aed
- Let. S be the sum of the family of all fragment models, i.c.,

S= ¥ ME).

B#ES ()9

- 8) For a finite set 4 of wifs, we define A a by e, A Aa,, where &[,..., o, is any
a=4

enumeration of A.
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We will show that § is strongly isomorphic to U.

Lemma 5.5. Let an SS5-model M=<W;r,v> be connected and
reduced (in the category o (WiI)). Then M s strongly isomorphic fo

_some fragment model M(E).

Proof. let E={se{Z}"|lw=n(e) (in M) for some weM}. Since
for any we W there uniquely exists an seE such that wi=n(e), we can
define ¢: W—E by ¢(w)=s Suppose d(w)=¢(w)=¢. We show by
induction that for any «eWf, wEa iff w 1:oc The case oePru{l}
is easily ascertamed since ¢(w)=¢(w"). The case a=f>y is trivial by
the definition of k= and by induction hypothesis. Finally, we consider
the case a=[J8. Then, since M is connected we see wi=[18 iff wi=08.
Hence, it follows that yu(w)=ju(w). Since M is reduced, we have w=
w', by Lemma 4.2. Thus we have proved that ¢ is a bijection. Since
both M and M(E) are connected and vx(¢(p))=v(p) for any pePrU {41,
we see that M and M(E) are strongly isomorphic.

Corollary 5.6. Let the assumptions be as in Le_ﬁ‘lm_a 5.5. Then
the strong isomorphism ¢: M—M(E) is unigue. ‘

Proof. Since M is reduced, we have Aut(M)={1p}, by Lemma
47. Since a strong automorphism is an automorphism, we see that i
is unique.

Theorem 5.7. Let M be connected and reduced. Sﬁppdse wkEHE)
for some weM. Then M is strongly isomorphic to M(E).

Proof. By Lemma 5.5, we have only to prove: “If E#E’ then
(e, By ((E) for any (s E)eM(E).” Suppose E#£E "and (& E)=x(E)
for some (g, Eye M{E). Then we can take a & such that 6eE—E' or
ScE'—E. Suppose deE—E. "Then (g, EY=On(8). But, since (g, E)
Ex(E") and y(E")+-—1On(d), we have a contradiction. The case e E'—E
may be treated similarly.

- Now, let the Universal Model U be expressed as the sum > M,
Aed
of its connected components. Then each M, is reduced because yu=1y.
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By Lemma 5.5, M, is strongly isomorphic to M(E,) for.a suitable E;.
Let ¢,: M »=M(E;) be the unique strong 1somorph1sm Define ¢: U

o Z‘,M(El) by P(w)=¢,(w) where i is the umquc index such that we M.

Smce ¢ is a strong isomorphism, we have the following commutative

‘.dlagram.

M(E) -

Aed

U

Heﬁc!e,'xM is als;o a's"crong isomorbliism. Suppose E;=E, for some A
sp. Then it is clear that Aut(ZM(E;))z2{1}. But, by Lemma 4.7,
it is contrary to the fact.that yy is a-monomorphism. Thus we have:

A ) L E;,#E“ if ].‘?‘—',u.

Now, fake any E(#@)c{+}*. By Theorem 4.8, we see Image (Xur)

is connected. Hence it is contained in some M, ie., Image(Xuz)S M,

" Take any (e E)EM(E) "Then,

(8 E)I=x(E) (in M(E)).

By the definition of Yuey,

XM(E)(B, E)|=X(E) (in U)

Hence,
XM(E)(S: EYex(E) (in M,).

By applying ¢; we have o

$mes(e: ENEE) (in M(E,).

- Therefore - by Theorem 5.7, we have E=E; -Thus we have proved the

following

Theorem 5.8, U is ‘strongly isomorphic to S.
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Similarly,-we have

_ fI‘heorem_,S,9.l Let M be reduced. JThen M zs strongly isofnofphié
to ..EEM(E) for some ES2(5)"—{@},

Proof. Let M= ZM 1» where M, (AeA) are reduced and connected
Since M is reduced we have that M, and M, are nonisomorphic if
A#p by considering the automorphism group of M. Hence by Lemma
5.5 we have the desired result,

Corollary 5.10. An isomorphism ¢: M—N between reduced models
M and N is an strong isomorphism.

On the other hand, it is clear that ZM(E) is reduced for any

. B2t —{@}. Hence we have

Corollary 5.11. There are 22"~! nonisomorphic reduced S5-models.

Theorem 3.9 gives a complete classification of reduced meodels up

: to (strong) isomorphism. We will further proceed to define for any
- model M its characteristic function X(M).

let w=I->4eU. By the Isomorphlsm ¢: U8 estabhshed in Theo-
rem 5.9, we will identify w with ¢(w). Hence w may be written as
w=I—+A4=(s, E). We define a mapping '

Xy U—— WIT

by Xy(wy=yx(e, E), where w={(s, E). Furthermore, for any model M,
we define

X M~ WIT
by Xy (W)=Xy(xu(w)), where x,, is the characteristic-function
Dot M — UL

Then the following theorem enables us to replace the semantical relation
= by the syntactical one .

Theorem 5.12. Let M be any S5-model. Then for any weM

¥+
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‘and ac Wit we have: S

wka (in M) zf and only 1f XM(w) ot

Proof Since wl:a iff xM(w)I:a (1n U), and since X M= XonM, Vi,t
suffices to prove the case M=U. So let w=I"—»4= (s, E) We prove
by induction on the construction of « that ' ‘ |

(@) if wi=a then Xy(w)l-o
and |

(b) if wo then Xy(w)"1o.

cxelPrU {L}: -The case a=1 is trivial. So, suppose a=p;ePr.

(a): Since (¢, E)E=p;, we have g=-+. Hence (e} -p;, 50 that X U(w)
=yle, E)=n(e) n Y(E)~p; (=), The proof of (b) is similar. :
a=fo7:

(a}: Since wkf>y, it follows that w=f§ or wky. Suppose w=f.

Then by induction hypothesis, we have XU(w)l——l B. Since Tf I—ﬁ :y,
Mwe have X o(w)tea. The case wt:y may be treated similarly. - '

(b): Since w= 5:>y, it foliows that wi=f and w=y. By it_ldﬁction

hypothems we have X g(W)—f§ and X JW)=—1y. “Hence, Xy(w)BA 1y
" Since fA1yT1(f>7y), we have Xp(w)—a. e
a=[f:.

(a): Since (g, E)Iz|j,6, we have for any SeE, (3, E)EB. " By induc-
tion hypothesis, n(8) A x(E) —p for any ée E. Hence, we have:

RO TS Ot - B

; 'Now since — V n(é) and l—x(E)—r-m(é) for any 5eéE we have o

Seft
(2)  FxE) = v (o)
dcE
Hence, from (1) and (2) we obtain
(3} BB

From this, by (=) and (—[1), we have x(E) =1 as desired.
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(b) Since (s, E)=10f, we have, for some d¢€E, (6, E)=f. By induc-
tion hypothesis, we have '

@ n(5), 12(E)~ 1B

.Let wWE)= One )} A A On(si) ATIOAE LA AT <>:i(e_,). Then from G
we can construct the following proof figure, which proves (b). -

(&), Onle)),..., On(g), T On(8r1 1)se .- —IOn(éj)—r—hQ 7
B, (), O nle;s )y, OR(e)=17(ey )., CI1I7leEy)

(O~)
OB, n(8), O nls+1)s. .., On(e) > 17ley),.., O17(E) (o)
- -1
Dﬁ’ D_ITC(SH.]_),..., Dﬂn(gj)_)D_ln(gl);‘--: D_ITC(E;_), _| 7[(6) ( D)
18, O alers s, O17(e) =017l L 737(e), O 17(8) a
— T . ‘ (extension)
OB, O1m(ey 1 heees D"ﬁﬂ(sj)—’D_m(ﬂ),---, Dj'ﬁ(ﬁt) '
xE)-08
7(3), x(E)-»—08A

In the above proof a double 1iné (=——I—) ‘means tt_llat several ‘trivi'al appli-

cations.of rules are omitted. ) . |
Now it is clear that (b) fmplie§ that if wea thé_n X U(w)_‘}-%cx. This

completes the proof of the theorem. '

Coroltary 5.13. Let X, :U—B be defined by Xyw)= [X (W]

Then Xy is injective.

Proof. Take any w=(g, E) and w'=(¢’, E') in U. Suppose X,(w)
=X, (w). Then, by Theorem 5.12, (g, E)=n(e") A x(E"). Hence, cleétly,
g=¢'. By Theorem 5.7, we have E=E'. Therefore w=w’, which means
X, is injective. ' o o ‘ '

In the above proof we have also proved
Corollary 5.14. Let w,weU. Then
(1) wEXy(w" if and only if w=w',

{2) Xy =Xy(wh if a_nd only if w=w!
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We extend X,: U—-WIf to
' | Xy: 2V — WA
as follows. Let PcW,. Then Xy(P) is defined by:
Xo(P)= vV Xy(w).

We note that newly defined X,;; may be regarded as an extension of the
" old one by identifying w with {w}: Now, for any ae Wil we can define
its normal form norm(ox) by

norm (o) =Xy(P,),
where P,={weUlwkEa (in U)}.
Theorem 5.15. For any o Wff, norm (&) ~c.

Proof. Let weP, Then by Theorem 512, kXy(w)—a. Hence
we have -V Xy(w)—oa, e, t-norm(x)—a. We prove Ho—norm (x)
by means of the Completeness Theorem. Consider any S5-model M
and weM such that wi=a (in M). Let w=x,(w). Then wa (in U),
ie, weP, Since wEXyw), we have w=y,(w)l=norm(e). Hence, by
the definition of ¥, wEnorm{x).- By the Completeness Theorem, we
have o—snorm(e). Thus, we have proved norm(x)~a.

We are now ready to study the mapping
| : h: 2V --—~> B
defined by A(P)=[Xy(P)]. Fifst,‘ wie‘ define
O:2y —2¢v -

by OP={weU|(w, w)er(O, )=>w cP}, Then 2Y may be considered
as an algebra 2Y=<2%v; n, U, OJ>. Furthermore, we consider B
as an algebra B=<B; A, v, O>. '

Theorem 5.16, h: 2”-;3 is an isomorphism.

Proof. Take any [«] €B and let P,={weUlwka}. Then by Theo-
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rem 5.15, we have h(P)=[norm(x)] =[«]. Hence h is surjective, Nex,
take any P, QcU and suppose P#@Q. We can take w such that we
P—Q or weQ—P. Suppose we P—(Q. Then clearly,

(1) ' X p(w) -Xo(P).

Suppose X (W)X (Q). Then by Theorem 5.12, we have wk=X,(@).

Hence for some w'eQ we have wkEXy(w). Then by Corollary 5.14,
we see w=w. This is a confradiction since w&Q and w'eQ. Thus,
we see

2 - X=X y(Q).
By (1) and (2), we have X (P)~ X (0), ie.,
[Xo(P)] # [Xo(O)] .

Thus, we see h is injective.
Now, let P, Qe2V.
(i) Slnce XU(Pn Q) I—XU(P) and X,(Pn@) I—XU(Q), we have

‘ (3) E FXU(PnQ)eXU(P)AXU(Q)

On the other hand, suppose WFXU(P)AXU(Q) where wel. Then by a
method similar as above, we can prove we PN Q. Hence wi=Xy(Pn Q).
Thus we see

@ - Xy(P) A Xo(Q) > Xu(PN Q).

By (3) and (4), we have h(P n Q)=h(P) A h(Q).

(ii) That A(PU Q)=h(P)vh(Q) is proved similarly.

(iii) First, take any we U such that w=Xy(OP). Then we [OP, so that
for any (w,wDer{(0, 1) we have w'eP. Hence w isz(P) Thus, we
have w|=|jX p(P). Therefore, we have

© FXU(DP)-»DXU(P)

Next, take any we U such that wi=[JXy(P).. Let w' be such that (w, w')
er(0, 1). Then we have w'=Xy(P). Hence w eP. Then by the defini-
tion of [P, we have we' lP. Hence we=Xy((OFP). Thus, we have
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© ) FOX(P)— X,(OP).
By (5) and (6), we have h(TOP)={1h(P).

Theorems 5.8 and 5.16 determines the structure of the Lindenbaum
algebra of S5. Since the cardinality of U (=S5) is casily calculated as

2n .
|U|=2Y,i '(2-")=2"-22"-1,
i=1 :
the cardinality of B is given by
| B =21Ul=22"22""1,
As an example, we illustrate the structure of U for n=2,

g2 gy & : B E3 " &3

Eg & & - & g £ &
E, E, E, E,
& . &3 & €3 &2 ¢ T83 6
- | \
g1 & ... & B 31 £
Es Esg Eq Eqg Eio
g3 &2 €3
/ Ej. Eis
&g - £
E;{ Ey; Ess

Fig. 5.1. Graphic representation of U(2*

9) Define a relation R, by that (e;, Ex) R, (g4, E,) iff the two points (sy, E,) and
(es, E;) are connected by a line in this figure. Then ‘the reflexive ‘and transitive
closure of this relation gives the .accessible relation of IV, o ‘
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In the above figure, we have put e,="1p; A=1p;, & =P ATIPs £2="T1P,
Ap; and g3=p; A p,.
Finally, since B is finite, from Lemma 5.4, we have

Theorem 5.17. :: B—C is an anti-order isomorphism. )

Corollary 5.18. Every theory of S5 (over the language L) is
finitely axiomatizable. '

~ Chapter 6
Applications

In this chapter we study two puzzles, namely, the puzzle of three
wise men and the puzzle of unfaithful wives, by applying the results we
have obtained in the preceding chapters.

6.1. The Wise Men Puzzle

In this section, as an ﬁpplication of the Completeness Theorem, we
give a model theoretic solution to the well-known puzzle of three wise
men. We will work on the language L=(Pr, Sp, T), where

Py ={P1: Da, Pa},
Sp={0, 81, S5, S5},
T={1}.

Since T is a singleton set we will write, for example, [SJo in place of
[Sij«. Now, the puzzle has been modified as follows by McCarthy 21,
22] so that it may be modelled in his knowledge system:

Let S;(i=1, 2, 3) denote the 3 wise men, and let p; be the sentence
asserting that S; has a white spot on -his forehead. The following are
given as assumptions.

(Al} pyAp,Aps;--- All spots are white.
(A2) [0]1(p;vpyVv ps) -— They all know that there is at least one white
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spot. ‘ :

(A3) [O1({S.1}ps A {S1}ps A {S2)py A {S23pa A {S33ps A{S5)p,) == They all
know that each can see the spots of the others. '

(A4) . [S31[S.1[S:]p; --- S; knows that S, knows that S, doesn’t
know the color of his spot. '

.(AS) [S:][S;1p; --- S3 knows that Sz doesn’t know the color of his

spot.

The problem is to deduce [.S'S]p;l (S; knows that he has a white spot)
from these assumptions. ' o

Let a=(ADAADAANA(ADA(AS) and nm=a>[S;]ps. We will
show that |-n (in K3) by means of the completeness of K3-models.
Namely, we show that 7 is valid in all K3-models. So, by way of con-
tradiction, suppose that there is a counter-model M=<W;r,v> for =n
such that M =n. This means that there is a world wy e W such that

¢} Wy
and
(2) wo =i [Ss]_Ps'

(2) tells the existence of a world w, such that

&) h Wo 2> Wy
and
@) w3 ps.

Since woE=(A4)A(AS), we have, by (3), .

(5) w, =[S,110S11p,
and
® w; = [S2]ps.

From (3) we have, by the definition of r,.

(7) o i wOi)Wl.
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Hence we have from (1)
® wi k= {S2)pss

* that is, w, =[S,1ps or w,=[S,]1ps. This, together with (4), implies

NC) N - wEISIps.

By (6) we see that there is a world w, such that

(10) ' ' ‘ w-l S, o,
and
(1 1) wy = Pz‘-

- From (5); (9) and (10) we have - - -

(12) | ws =[S, 1ps

and
(13} w2 = pa.

By (10), since 1(S,, 1)=#(0, 1), we have

(14) w; —25 w,.

From (7) and (14), using the transitivity of #(O, 1), we have
(15) Wy —25 W,

Since w,=(A3), we have

(16) w; = {S:}p2 A {S1}Ps.

From (11), (13} and (16) we have

amn w1817,
and
(18) waE=[S1]7ps.

Now, (12) implies the existence of ws; e W such that




KRIPKE-TYPE MODELS FOR SomeE MobpaL Locics - 437

(19) Wy Ly Wy
and
(20) w3=lpo

"From (17), (18) and (19) we have

2y L wsEpy
and ‘
(22) o | O wa=ps.
We have | |

@) T we—2w

from (15) and (19). T_hen, since wol=(A2), we have
(24) : _ wiEp; VPszs

But, this is contradlctory to (20)—(22) - Thus, we have proved that = is
valid. : - :

Note that we - d1d not use the assumptions, (AI) and [0] ({82}
A{S3}p1A{S3}p2) We 111ustrate the above irference in ,the following

figure. ‘

AfSsles © o Tips ] . o
S ‘ 1P o

[01{S:}ps {Sz}l?_;_ ' } U 2

[01Sdes (81 ps

[S:]-08:1p:. T[S.]p, 1P ] L

: S P2 ‘
O1{Ss}p. -~ ., . {31}172 |
[S5] [32]—'[31]131 ' [Sz:]""[SdPl _|[S]]pl Lo TPy

[o1(p, VP2VP3) . " PLV P2V DPs
- ) Fig. 6.1, Proof of the validity of = -

For the séke of compa'risbr;i, we give a formal proof of = in GT3.
It may be observed that these two proofs are essentially along the same



MASAHIKO SATO

. 438
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line.

6.2. The Puzzle of Unfaithful Wives

-~ We begin by explaining the notions of knowledge base and knowl-
edge set, which are fundamental for our formalization of the puzzle of
unfaithful wives.

6.2.1. Knowledge Set and Knowledge Base

Let L be any language. We consider in KT4 and KT5 over L.
We will make the notion of the totahty of one’s knowledge explicit by
the following definitions. '

Definition 6.1. K=Wff is a knowledge set for St if K satisfies the
following conditions:

(KS1} K is consistent.
(KS2) K=[SAK. \
(KS3y If K[St]ey v v [Stle, then Ko, for some i (1<i<n).

“Definition 6.2, B=WIF is a knowledge base for St if B satisfies
the following conditions:

(KBll) B is consistent.
(KB2) B<[SfB.
(KB3) M Br[StJe;v---v[Stie, then Bl-a; for some i (1<i<n).

By (K82) (or (KB2)) we see that any element in K (or B, resp.)
has the form [St]e. It is easy to see that if B is 2 knowledge base for
St then [Sf]B is a knowledge set for St. We also note that the above
definitions are relative "to the logics KT4 and KTS, :

Let FCWﬁ' be con51stent We compare the following three condi-
tions. : C

(1) If I'=e then I'——1[St]e.
@) If I'—[80)eyv - v[St]«, then I'tu; for some 1(1<1<n)
(3) If I'—{St}x then I'a or ['——a.
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First, we consider in KT4.
Lemma 6.3. In KT4, we have (1)==(2)=(3) but (2)#(1).

Proof. (1)=(2): Suppose I'-[St]e;v--v[St]e, and I't~e; for any

i Then by (1), we have I'l-—[Stle, for any i. Then we can prove
T 1, which is contradictory to the consistency of I'. . '

(2)=(3): Trivial.

(2)#(1): Since the disjunction property holds in KT4 (Theorem 3.12),
the empty set @ is a knowledge base for any St. Let I'=0. Then
I satisfies (2). Let pePr19 Then neither p nor 1[St]p is provable
in KT4. Hence, I' does not satisfy (1).

In KT5, we have the folloWing
Lemma 64. In KT5, (1), (2), and (3) are equivalent.

Progf. (1)=(2)=(3) are proved similarly as in Lemma 6.3.
(3)=(1): We prove the contraposition of (1) assﬁming (3). Suppose
I'~—1[St]a. Since —[S{][SAaxv[Sf]1[St]le in KT5, we have from (3),
I'+[St]a. " Hence I |-a. :

Note that @ is not a knowledge base in KT5. We now study the
semantical characterization of knowledge sets. Let M=<W;r, 0> be
any model (adequate for the logical system we have in mind). For any
weW and (8, HeSpx T, we define K (SH=WIf by: : " :

K (S8)={[St]a|lwk=[Sf]a}.

Sihce, -as we will see below, K,(Sf) is a knowledge set for S, we call
it the knowledge set for St at w.

Lemma 6.5. KW(St)V'is a knowledge set for St.

Proof. We only prove (KS2). Let [Stlxe K, (SH)=K. Then, we
bave Kia, ie, aeK. Hence [Stluc[SfK. Let [Stlae[St]K. Then

10) We need to assume that Pr is non-empty. In fact, if Pr=0, we have Lemma
6.4 in place of this lemma, since in this case KT4 is equivalent to KT5.
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«ekK, ie., Kra. Since any element in K is of the form [S£]8, and the
logical system is KT4 or KT5, we have KH[Sf]a." Since wi=K, we
have wi=[St]x, so that [Sflae K. : ; :

Let K be-a knowledge set for St. We say weM characterizes K
if K=K,(St). '

Theorem 6.6. Any knowledge set is characterizable.

Proof. Let K be a knowledge set. Let A=W{—Ks. We show
that the sequent K—[Sf]4 is consistent. Suppose other;wise{ so that
1-K—[Sf]4. Then for some finite set {of,...,x,}=4 we have, K-

[St]ety,..., [Stle,. Here, we have n>1 since K is consistent by (KSI).

Hence, by (KS3), there exists an i(l<i<wn) such that —K—e¢;. By
(KS2), we have [Sfle;eK. This is a contradiction. Thus, K—-[Sf]d
is consistent. So, by the Generalized Completeness Theorem, we can

take a model M=<W;r, v> such that w=K—~[5f]4, for some weW.

Then, clearly, we have K=K, (S0).

6.2.2. Informal Presentation of the Puzzle

The puzzle of unfaithful wives is usually stated like this:
There was a country in which one million married couples inhabited.

" Among these one million wives, 40 wives were unfaithful. The situation

was that each husband knew whether other men’s wives are unfaithful
but he did not know whether his wife is unfaithful. One day (call it
the 15* day), the King of the country publicized the following decree:

(i) There is at least one unfaithful wife.
'+ (ii) Each husband knows whether other men’s wives are unfaithful

or not. . ‘ ‘ ‘ :

(iii) Every night (from tonight) each man must do his deduction,
- based on his knowledge so far, and try to prove whether  his
wife is unfaithful or not. ‘ .

(iv) Each man, who has succeeded in proving that his wife is un-
faithful, must chop off his wife’s head next morning.

(v) Every morning each man. must see whether somebody chops
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off his wife’s head. ‘ _
(vi) EBach man’s knowledge before this decree is publicized consists
only of the knowledge about other men’s wive’s unfaithfulness.

The problem is “what will happen under this situation?” The
-answer is that on the 41°* day 40 unfaithful wives will be chopped  off
their heads. We will treat this puzzle in a formal manner.

6.2.3. Formal Ttreatment of the Puzzle

We will treat this puzzle by assuming that there are k (2-1)' married
couples in the country. Then the language L=(Pr, Sp, T) adequate for
this puzzle will be: ' '

Pr= {pls-'w Pits
SP={0; Sl_a-"a Sk} »
T=N+,

where S; denotes i** husband, p, means that S;s wife is unfaithful and
teT denotes * day. We employ KT5 over L as our logical system.
(Our  argument henceforth can be carried out similarly in KT4 except
" for one point, where an essential use of Lemma-6.4 is necessary. This
fact seems to suggest us that the negative introspective character of KT5
is ‘essential for the solution of the puzzle.)

As in §5.2, we define

m: {4} — WA

" by n(sl-uak):_z\ pit. We put II=Image(n) and H0=He{fj\ b;}, where
Di="pp. We!_allso use n to denote arbitrary element in I1. [Hll\Tow, let T
denote the decree publicized by the King on the 15 day, and B.(Sn)
(i=1,..., k) denote a knowledge base for S;n under the circumstance
n=n(g,--g)ell, Let us put

. T if BR(S,n) o
FB.(Sn)o 1=
. L, otherwise
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and
' . T . if B (S;n)t~u
rB,‘(Sin)T"CC =

L otherwise,

- where ¢ Wff. Then, as a formalization of the puzzle, we postulate the
following identities:

B(S =[S U {[S11pflj# i, j=1,..., k} -+ Eq(r, i, 1)
B (Su+1)
=[S +11B (S U {[Sin+1] I:Sj"]Pj-an(SﬂI_) Fpp =L, k}

U {[Sin+'1]ﬂ[Sjn]pj|j3;,(Sjn)1’<pj;j=1,.4..', k} -~ Eq{m, i, i+1)
. -
F={I:O]-]i__\_/1 Pa} u {[01] {Sil}Pj[j'?"' i, i=13--'s k! j=13"'s k}

U {[O1) (x> (I By(Si)t-p; 12 [0n+11[S;nlp)im e o,
| i=1,0., k, ne T}
u {fo1] (7!‘:"( I By(Siyt<p; 1= [On+ 1]1ISn]p))lm e Iy,
o i=1,.0s k, ne T}
U {[OL1(T Bi(Sin) o - o [O1] (x> [Sinlo)lm € Mo,
il kg eWE) | - Eq(%)

The informal meanings of the above equations are as follows:

Eq(m, i, 1): Knowledge base for S;1 under 7 consists of the knowl-
edge about what the King says on the 1% day and the knowledge about
whether other men’s wives are unfaithful.

Eq(r, i,n+1): If §; could prove p; in the n* night, then S,
knows on the n+ 1% morning that [S;n]p;, since S; sees that S; chops
off his wife’s head in the n+1¢ morning. If §; could not prove p;
in the n'* night, then S; knows in the n+1 morning that —1[8;n]p;,
~ since S; sees that S; does not chop off his wife’s head in the n-+1%
morning. '
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Eq(¥): The meaning of the 1¢ line of Eq(#) should be clear. The
274 and 3 lines mean that FOOL will know every morning whether
anybody could prove the unfaithfulnéss of his wife in the previous night.
The last line is an indirect definition of B,(S;n).

Since the meta-notions such as knowledge base and provability ()
tannot -be expressed directly in our’ language, we were forced to inter-
pret the King’s order into I' in a somewhat indirect fashion. -

Now, if we read Eg{+) as the definition of I', then we find that the

definition is circular, since in order that I’ may be definable by (x) it

is neccessary that B,(S;n) are already defined, whereas B,(S;n) are de-
fined in terms of I' in Egs(n, i, n). So, we will treat these equations as
a system $={Eq(z, i, n)|meHy, i=1,.... k, ne T} U {Eq(+)} of equations
with the unknowns {B(Sip)lzel,, i=1,.,k, neT} and I We will
solve $ under the following conditions:

(#) For any nell,, I'U{n} is consistent. :
(#%) For any nell, and S;n, B,(S;n) is a knowledge base for Sq.

We think these conditions are natural in view of the intended meanings
of I' and B (S:n). o

For the sake of notational convenience, we. consider E={+}* as a
k-fold direct product of the vector space GF(2)={+(=1), —(=0)} with
addition @®. Thus, {¢=—-—+ —--—}i=l,..., k} forms a basis of E.
We define a norm on E by jg|={{ils;=+}, where s=g;---g.1"} For
any g=g--geck and i=1,..., k, 'we‘put

e(+ =gy gy Ty be '
| e(—i)=£1---8;_1—.e,..ﬂ---sk,__
and for any n=n(g)ell, we put
(4 D=n(e(+ 1),
={—)=n(z(—1)).
We also put Ey=E—-{0}=E—{—---]}.

I1) For any ecE, we will employ the convention of denoting the i¢* coordinate
of ¢ by e, -
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Now, let us suppose that < <B(Smlwell,, i=1,...,k, neT>,I>
is a solution of $ under the conditions (¥) and (4%). Then the follow-
ing lemma holds.

Lemma 6.7. Let n=n{e)ell and neT. Then we have:

@) If n=|e(+9)| then

B +(Sm) D
and |
ByeoSmB G n(—Dello).
(D) If n<ie(+10)| then
B Bucr(S)=BagerfSt),
and hence

B 5 p(Sin)t=p;

and

Bu(—i).(sin)}‘l—’i"

. .Proof., We first show that Boinf(Si)=B—(S;n) implies Bc+5(S:i1)

+<p; and B, p(Si)t<p;. Suppose Bycip(Sin)tpi. Then B~ Sii) ;.
Hence [011(r(—)=(T=>[0n+11[Sin]p)el’. So,

Q | Fen~i)=pn

On the other hand,

@ ' a(—i)pr U

~ From (1) and (2), we have -

® o } (=), T'-L.

This is contradictory to the condition (¥). Therefore we have B.;(Sin)
t<pp  By(n(Sit)t=p; is proved similarly.
We now prove the lemma by induction on a. -
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n=1: ‘
Proof of (i).' Suppose [le(+i)]=1. Then, since

— ———_ &
FP1sess Pimts Pretsees Po V Pt = Per

BoonSIDHISLTp;  (j#D)

and
K
By oS+ ‘\=/1Pi,

we have B, y(S;1)p; ‘The rest of (i) is vacuously true, since n(—i)
e, oo

Proof of (ii). Suppose [e(+Di>1. Then, B,y(Sil)=Byy(Si)
follows directly from Egq(r{+i), i, 1) and Eq(n(—1), i, 1). '
n>1:

Proof of (i). First we show By, y(Sin)-p; from the assumption that
n=|e(-+i)|. Since n>1, we can take j#i such that ¢;=+. Then n(+i)
=a{+i}(+j) and [e(+i)(4j)|=n>n—1. By induction hypothesis, we
therefore get B, .(S;n—1)<p;. Hence, o

(4) [Sim][Sn— 11p; € Bugss(S1).

On the other hand, since (=i =n(=1)(+j} and |}s(—i)(+j)||=n—1,
we have by induction hypothesis, By—y(Sjn—1)-p;. Hence, by Eq(x)

) [01] (=~ i) (T > [0n] [Sn—1]p ) e I

From (4), (5) and Eg(n(+i), i, n), we have B, ,,(S;)—1n(—i). Since
B S Fr(+1) v m(—i) and By 4(Si) 2[Sin]-[S2]B(45(Si1), we have
B o(Sin) (4 v n(—1i). I-Iie‘nce‘= we have B_ . (Sm)a(+i). There-
fore, B, +y(Sin)p;.

We next show that B, _,(Sp)p; from the assumption that” n=
le(-+d)ll. We can take j#i such that g;=+. Then |e(—~D(+)l=n-1.
By induction hypothesis, B,_,(S;n—1)+p; Hence, ‘

(6) - [Sm1[S;n—11p;€ Bu— oS-

Since |le(+#)(+j)|=n, we have by induction hypothesis, B, .;*<p;.
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Hence,

O [OL] (n(+1)=>(T > [0n] 2 [S;n=11p)eT. .
From (6) and (7), by an argument 51m11ar as above we conclude that

B _(Si) -1
The case n>|e(+1i}| is now easy, since we have

B (Sim+1)2[Sm+11B(Sim),

for any m.

Proof of (ii). We next cons1der the case n<[e(+D]. By induction
hypothesis, By(+p(Sin—1)= Bn( p(Sm—1). Since [le(+1)(+)]= lie(—D(+ )
>n—1 for any j, we have by induction hypothesis,

: Bn(+!)(+1)(sfn 1) Bn(+:)( n(S" 1)

i

and vt
Brgeiner p(S— D) =By p(Sn—1). _
Hence B, 5(S;n—1)t~p; and B~ ,-‘)(S\ t—1)t<p;. Thus, we have B, »(Sm)
=B, (Sm) by Eq(n(+1), i, n) and“Eq(n(—i), i, n).
Summarizing this lemma, \n.fe have ’
Corollary 6.8. B,(Sm)p; if and only if &=+ :and n=|ls]l.

We next prove the following lemma.

Lemma 69. For any n= n(s)eﬂo, {ﬂ:}UF is camplete I.e, for
any oc Wi, either ‘

)

bn, I'— .o

or

o, m, ' =,
Pro'bf. -By induction on_the c_:onstrug:.tion of «. First we note that,
by condition (¥), it is impossible ‘that both z, '»a and «, m, I'— are
provable. -
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gePru{l}: ,
If a=p, then we have mi-pj'. Hence, cleatly, tn, [—»a or Fa,7,
[—. If a=1 then we have I-—.L, 7, [, T o
. a=f>y: _ e
~ Suppose tm, I'»y. Then we have +=x, 's« by the following proof
figure: -

w, I =y
B, mw, I'=y.
m o>y
Suppose 1§, =, I'->. Then we have bx, [—a, similarly.
By induction hypothesis, we see that the remaining case is |-, ['>f
and -y, n, F'-. Then, we have —foy, n, I'— by (o).
05=|:S,-n:|,8: . .
Suppose f, m, I'>. Then we can construct the following proof:

B, I~
[Sn]B, =, I'—
Suppose t-m, I'»B.
(A) We first consider the case rn>|e{(+1)].
(Al) The case n=n(+1i): '

In this case, noting  that [O1](a(+i)=>(T=[0n+1]1[Su]lp) el by
Lemma 6.7, we first construct the following proof figure. .

(1) L— (Sl pi— [Sin] p:
=T [On+1] [Sin] p;— [Sin] p;
a{+i-n(+i) T =2[0n+1] [Sin] py— [Sin] p,

(+) = (T 2 [0n+1] LSindpi), n(+)—[Sin]p;
[O1] (a(+1) = (T = [0n+1] [Sinlpy), a(+i)~[Spmlp;
n{+i), I'=[Sin]p;
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Let j#i. Then, since [O1] {S;I}pjel“, we have the following proof
figure.
(2) . ) : pfi—ypfj
n(+i)—py

py—py p, w4+~
[Silpy—[Swdpy = [Sil]py, n(+)—
2(+1), [SiL1py v [Sil] oy~ [Swlpy
n(+i), [01]1 {Sil}p;~ [Slpy

- w(+i), L= [Smlpy

From (1) and (2) we have
3) () Do [Spda(hD.

(A2) The case m=r(~1): .

. We treat the critical case of n=|e(+i)|. Then we see lle(— D
=n—12>1, since n(—i)=neﬂ0.~ So, we can take jsi such that g;=+.
Then, since J&(+ ) (+j)] =n and fe(—i)(+))]|=n—1, we have

[01] ('1:(:.+ e (T > [On]j [Sm— 1]pj)'e r
and | | -
[01(x(~)=(T >0 [S;n—1lpel.

Hence we obtain the following proof figure.

n(—i); T[Syl [Sn—11p; T-[Spl(n(+i)>1[S;n—11p;) =
#(—i), > [Saln(+i) w(=i), [~[Sp] (m(+i) v (=1
n(—i), T [Spla(=)

i

From the above proof, for any n>|e(+ )|, it follows that
€] e C a(—i), T = [Spln(—1).

Since T=n(+1i) or n=n(—1i), we have from (3) and (4),”
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3) - o . bm, I = [Sn]n.
Using (5), we obtain the desired proof figure:
w, = f
(5 [Sinln, T=p

S, F->[Sple - [Smln, T-[Sin]B
| m, [>[Smlf

(B) We next consider the case ﬁ?[la(+i')]|.

Let &=e@e. Then, by induction hypothesis, we have the following
two cases.
B ), M- p:

The following proof figure takes care of this case.

2@, = w(e), [B
| ﬂ(é) v 1!1:(3.’), Ir'—p |
e (Si] (x(6) v (&), T~
7, P [SrlG@ vaE)  [Sel (@) v (), [~[SmlB
n, = [5n]f

(B2) B, n(e), =:
We first show that

(6) _ b, I'— <Sn>nfe).

Suppose m=n(+i). Then, by Lemma 67, we have B_(S;)t~p; - Since
B.(Si) is a knowledge base by condition (#%), we have B (Sm)+
[S;n]p, by Lemma 6.4. (Note that we are considefing in KT5. Here
we remark ’th:at this is the only point where we use the assumption that
our logical system is KT5.) Then by Eg(), we see that

[O11(T 2 [01] (x> [Sm]ESmlp)) e T

Hence we have - ;-
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) n, I'=» <8n>"p;.
Now, for any o, 7 e Wi we have: .~ " 71~ " =
(8) F<Sn>e, [Splt— <Sn>{anaT) 2UUEL o

‘as can be seen from the- following proof figure.. . = -

R A Y . SRR

E ‘1(0'/\1:), T=710
[Sn]“‘l(af\f) [S;ﬂ]T-*[San]—lrf

' <.S‘in>cr [S n}c—> <S,n> (aA 'r)

Now: we scan’.obtain (6) .from (2), (7) and’. (8) (where we put o="1p;
and 'r=j/\ pi). The case m=n(—i) may be treated similatly.
+#1i

We can then construct the following proof figure:

e
B, I'=1x(e)
e ISmB T,
B (> TR T N e P R L O
TS ESHESTE) LS n(e); [Slf, T—
[SinlB, =, I'—

a=[0n]B:

If +8, =, =, then we have '+—[On]B, =, ['— by ([On]—). So, sup-
pose b-m, I'~f. Then we have the following two cases (C) and (D)
(C) The case n2max{|[s(+1)|[ li=1,..., k}.

As in (A2) 1t 1s suﬂiclent to prove the cntlcal case of n max {i|a(+t)|| i

k} Let us put I(s) {1]3,— +} o

(Cl) The Case f(aj#{l 20,k

In this case, ‘we ';ha‘f?_:.n-—-: ]I§[|+1;.;j Consider-any-i such that g=i,
Then we have ﬂ:=1t(+i),'.and sincé_ n-—1_>;]|a][=||.s(+i){|, we have B (S;n
~1)~p, by Lémma:'6.7. - Hence. we have ' '

[01] (= (T > [0n] [Syn—11p)) €T
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So, we have

)] r, I = [On][Sip—11p; (G &=+)
and hence

‘(10) n, T [0nlp, -(f &=+). .

Let D={8e{+}*I(e)<I(8)}.. Then, by (10) we have
(11) : n, I' = [On] JVDn(é) .

Now, take any éeD—{e}. Then we have 6] > e =n—1. Since =(e)
€I, we can take an i such that g=-+. Then we have 8=05(+i)

“Since [[8>n—1, we have Bug(Sn—1tp, by Lemma 6.7. Hence, we

have

[onoiascf:comrw&n-umer.

From this, together with (9), we have the following proof figure.

(12) N
©) .o
7, [+ [0n] [Sm—1]p; r-[on] (=8> [Sm—11p)
7, [>[0n)([Sin—11p; A (d) > 7 [Sn— 11pa)

x, = [0On]w(5)

From (11) and (12), we have
(13) T : \-m, I~ [On]x.

(C2) The case I(g)={L, 2,.. k}

In this case, we have e=+4-+ and n=|¢| (=k). Let 5eEo-{a}
We can find an i such that §=+. Then we have n— 1= 8] =18(+ D).
Hence, by Lemma 6.7, we have B,(Sin— 1) !r—p, Hence we have

(14) : ‘muw@:w=WMwmlhmd“

On the other hand, since n— 1<||8||-—H£(+l)[l, applymg Lemma 6.7, we
get B (Sjn—1)t<p;. So, we have
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[01] (e (T > [0n][Sm—11p)eT.
Hence, we have ' |
(15) : =, I'— [On][Sp—1]p;.
‘From (14) and (15), similarly asl'in (12), we obtain
as - 7, = [0n]n(0)  (if deEp—{e}). -
By (16), fogefher with the ‘fact fhat —Ir—[0n] a:{gﬂn{é), We have ‘
an - . n, = [On]n.

Now, by the results of (Cl) and (C2), we can, construct the follow-
ing proof figure:

E F—;ﬁ-
{13) or (17) [On]®, [P
n, F'=[On]le = [On]m;, T—[On]p

n, [=[0n]f

" (D) The case n<max{|s(+d]|i=1,..., k}.
Let D={5¢eEgn<max{|[6(+Df|i=1,..,k}}. Take any SeE,—D
and choose an i such _that §;=+. Then since k>n by assumption, we
have n>max {|5(+)[|i=1,..., k}> 18] =]8(+i)]. Hence, we have

Bn(ﬁ)(sin -DEp
so that '
a) | [OU®>(T >0 [Sn-1Ip)eT.
On the other hand, we have
B(Sin—1)t=~p,
regardless of 71:=ﬂ1t(+i) or n=n(—1i), so that

(19) [01)(m=(T > [On]1[Sn—1Ip))el.
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From (18) and (19); we’ have '_:f'-_f;‘f'-'"j SRR
(20) bn, [ > [On]—n) (f 8eE,—D).
From this, we have I I S T
‘21 < nyF o [On] V or(8). -

N -17]

Next, let deD. Then wé can find 7%,...ymeD such that yl=g,
=4 and. Y@yt =1(i=1...,m—1). Now, take any i, such that
1<i<m-~1. Let y"@')'ii*"iéej—. Then we have ypi=pi(+j) or y'=

¥(—=j). Suppose, first, p'=yi(+j). Then 'y‘“=y‘(—Dej='y‘(— 7). Since

y**1eD, we have n<max{[]y‘+1(+l)|l|l— o K=" (+DI. Then we
- “can’ apply (6) and obtain ' o

(22) l—ﬂ'(?i) I' —» < Sn>n(yitl),

We can obtain (22) smnlarly for the case y=94—j). From (22), we
get U™t

(23) O Eafyh), P <Onsw(ytly.
From (23) we obtain the followiﬁg proof:

v mLliny n A 7(y?), I > <On>n(y3) -

| oAl m(#Y, Ty
[On] (%), L~ [On]1n(y?)

a(yy), 1“~)<On>n('y2) <On>zn(y?), P-—><0n>n(}l3)

n(y"), [ - <On>n(y%)

m(m1), T <On>n(my

n(yY), I'> <Onzw(y™=1) " L0n> n(y™ L), I'» <On>zn(™)

L wOY), > <On>a(y™) .

Namely, we have. " : 7~ " -7 - e o0
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(P} r, I' = <On>=(d) Gf deD). :

(Though the above proof applies only for m>1, (24) cIearly' hold$ even
if m=1 (ie., e=48)) i :
Now, by induction hypothems ‘of the. lemma, we havc the followmg
© two cases. - _) ;
(D1) +~n(8), I - B for any deD: R
Let D be enumerated as D={6,..., 8%}, Then we have the. follow-
ing proof: ' - B

(25) =y
_ n(ﬁ"‘l‘) r-p .n(é"‘), F-»ﬁ
26 v (3%, T
n(8Y); rl»ﬁ/ RV N (6, T p
1) 7 V@), Iop
x, I'—[0n] JVDn(éi [0n3 v n(8), I~[0n]f /

-

(D2) -8, n(8), I — for some deD:
In this case, we have the following proof ﬁgure?:

26) T .~
B, ﬁ(a),.:fié-
S ‘.’l?,»%".—."m(é).
(24) _ [Or]f, = [0Onr]1=(d)
7, P> <On>n(8)  <On>n(6), [On1f, > 3
s e s w[OR]BER D e Tl L

This completes the proof of Lemma 6.9.

- Suggested bY this- lemma, -we : construct ‘a  KTS-model M= <Eo;
-ryv> as follows: : . o _
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(1) (g O)er(S, n) iff
(a) e=¢
or
()] s®5=ei agd n<]|e(+i)]|__= [6C+D .

- (i) (& 8)er, n) it

©) &=6
or |
() n<max{[e(FD)||i=1..., k} and
n<max {|a(+D|}i=1,..., k}.
(iii) seu(p) iff &=+.
(iv) o(L)=0.

As aﬁ example, we illustrate M for k=3

—

L S / \-Slr
/OILW L Ol\+

—_— + +. + pa—
\ s2 - . Sa,z /
. a2 \ o2
551 / s 851
ol T o1
I .
552 .
LA 551 /
ol / o1
Tt

; Fig. 6.3. Structure of M for k=3
The following lemr.na‘ shows that M is a model of I'.

Lemma 6.10. Let eeE, and. a& Wil Then we have b-n(e), I'—a
if and only if e=a (in M).

Proof. The proof is obtained by faithfully tracing the. pfoof of
Lemma 6.9.° We prove that (a) ek:o implies -n(g), F'->x and (b) eda

implies +a, n(c), T—, by induction on the construction- of «. How-

o



v
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P

Proof of (a).
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ever, we only prove the case a=[On]f since other cases may be dealt
with similarly by referring to the proof of Lemma 6.9.

Suppose s]:[On]ﬂ We have two cases.

(A) The case n>max{le(+i)]i=1,..., k}:

Since sf=§, we have
@), I~ B

by induction hypothesis. Together with (13) or (17) in Lemma 6.9, we
have:

(13) or (I7) - - ‘ n(e),i"-*ﬁ
n(e), > [Onln(e)  [On]n(e), [—[On]f
(), I'>[Onlp

(B) The case n<max{[e(+dl]i=1,..., k}: _ o

Let D —{6eE0!n<max{||5(+i)l|]i— ..., k}}. By the definition of 1,
we have &% n,§ for any 6D, Then we have 6l=ﬁ since el=[0n]B
Hence by induction hypothems we have .

Fa@), I — B
for all §eD,. Then we have
. +n(e), I'— [On]p

by (25) in Lemma.6.9,

Proof of (b).
Suppose e=i[On]f. We have some d such that 5=| g and &-98 4.
(C) The case n>max {e(+ Dl [i=l., K}:

In this case, by the definition of r, we have 6=s. So, we have
By nle), T

by induction hypothesis. Hente we have
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ctlanl B0 wesm peoen el i—{On]ﬁ ‘n(e), I =

(D) The case n<max{j|e(+z)|l|z— "k}:'w o o
By the definition of », we have éeD,. Then, by (_26):'ii1 Lemma
6.9, we have ) ' S

Honlf, m(e), F—». .. : .= 1

Lemma 6.11. Let eeE, and ‘wec Wi Then we have B o(Sim) o
if and only if e=[Spnle.

Proof. Only if part: Suppose B,,(S;n)«. Then we have
Boo(Sin) =[Si]e.  Hence, we have

[o1(T=[01] ()= [Sim)e T

From this we see that _

|—l11:(a'),. I'= [S-n’]a.

Hence by the above Iemma we have el:[S n]rx
] 'If part. W have two cases . ' : '
(A) “ne ||a(-]—1)[| “Since" [S n] [S n= 1] [S I]pji EB,‘(E)(S n) _fc_)r any ﬁéz
and B, (Sip)pit (Lemma 6.7), we have

I.-—B,,(;(Sin.)k—') n(e).
Since s=[S;n]a, we have

(e), T = [Sinle
by Lemma 6.10. Thus we obtain the following proof 'ﬁgtii'e::' g
‘_Bﬂ(z)(sin);nts) 75({'1), TT’[SI'”]“‘._ o

By “,'f.‘ LI H} oo b -‘B!tfsj(_‘srin)i r_’[Sln;lt_x B ‘
‘Bn(a)(Sin)s [S;l]f_'—-) [Sin]a

B (S, [Sin]--[S,11T ~ [Spnla
B (Sin)— [Sin]a

(extension) °
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(B) n<|e(+D[: Let JS=e@e;. Since S, 5 we have &k=[Sn]e.
Hence we have the following proof ﬁgure.

Ceiet 'n(z-:) VF—;[S n]a A 71:(6), F-{S n]oc B
Boo(Sm)—n(e) vu(®) (&) v 5 (5), r—»[s o B
Bn(s)(szﬁ), F_’[S;"]OC h

Bn(e)(Sin)s [:Sin]'"[Silr]‘r_’[Siln]a ‘

B,y (Sin)— [Sin]a
Combining the above two lemmas, we have -

Corollary 6.12. Lei ecEy and e Wi, Then we have B"(E)(S i) o
if and only if }—n(s) =[S, n]a

Let us recall here that we have been arguing by assuming that
< <B,(Sn)>,T> is a solution .of $ -satisfying (%) and: (#¥). By
inspecting Eq(), we see that I is uniquely determined by Lemma 6.11

. (provided that <<B(Sm)>,I'> is in fact a solutlon of 3 under (%)
| and (ﬁ;)) SO, let FEWH be defired by: :

PO p VIS % =1 k,j=i,-'--,.k}
0N (6P i 1 py=[On+ 1SuIpne Ty
_1 1 s k. neT} '
OB i n 'pi):[oﬁﬂhzs n]po)lneno,
| ;__1 Kk oneT}
U A{[O1] (P(n, i, n, )= [01] (n:’[Sin]oc)).[n:eHO, :
=1,..., k, neT, ae Wi}
where P and P are defined by
| o] T eI

P(T[(E), i, f, D:)=
o : otherwise- .. - -
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and ¢

~ [T if ed[Smle
P(n(e), i, n, a)=
: 1 otherwise.

Using this I, we define E.,,(Sin)- inductively by means of équations:
B (SH=[S:11l'v {[S,-l]p;ilj#i,j=1,..;, k}, | |
B (Sn+1D)=[Sn+1]1B(Sn)
U{[Sm+11[S;nIp B (Si) s j=1,..., k}
U {[Si+ 11 [S;nlp| B Sn)pj, j=1,..., K},

where w=rn(g).
In order to show that thus deﬁned <<B(Sn)>,'> is the umque
solution of $ under (¥) and (¥¥), we prepare several lemmas.

Lemma 6,13, [ satisfies (), i.e, for any eeEg, {n(e)} Ul is con-
sistent,

Proof. It suffices to prove that si:{ﬁ(s)}uf (in M). It is clear that
eE=n(e). It remains to show that el=I. However, we bnly prove (a)
e=[01)(z>(P(x, i,n, p)=>[0n+1]1[S;nlp)) and (b) s=[01](r=(P(n, i, n,

p)=2[0n4111[S;n]p), and leave the verification of rcmammg parts to
the reader. ‘
Proof of (a).

Take any 6eE, such that g-924, § and suppose that dF=n and
o0=P(n, i, n, p;). Then we have n=n(d) and 6F[Si]p;. Suppose, by
way of contradiction, that there is a y€E, such that & 2utl, 9y and yo
[Sinlp,. Then we have y#d and hence n+1<max{||6(+l)|||l-—- 4
Hence, n<|[6(+7)[l. Buf, since dE=[Sn]p, we have n>|8(+1)|, which is
a contradiction.

Proof of (b).

Take any & such that & 2., § and suppose that d==n and 5= P(m, i,
n, p). Then we have m=n(6) and J={[S;nlp, Suppose further that
there is a peE, such that §-9+1,y and yE[Smlp;. Then we have
y#4& and hence n+Il<max {(|yW+D|lI=1,...,k}. Hence, n<[[y(+0)i. But,
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since y=[S;n]p, we have n>|y(+1)|. This is'a contradiction. - Thus, we
see SE[On+1]1[Sn]p;.

Parallel .to Lemma 6.9, we have the following lemma.

Lemma 614, Let eeE, and :rc——-_at(s).-‘ Then, fo‘r", any aeWﬁ', we
have either +m, ['—a or Vo, m, ['—. 5 '

Proof. By a slight modification, the proof goes exactly parallel to
that of Lemma 6.9. . For example, in place of (6) in Lemma 6.9, we

obiain

®) : . bm Fo <Sp>a(E).

by the following reasoning: Supposc m=na(-+i). Then, since n<|e(+ D,
we have e=[Sn][Sxlp; (by the definition of M). Then, by the defini-
tion of I', we see that h ‘

[01](T =>[01] (x> [Sn] [Snlpe T

Now the proof of {6) goes completely par:illel “to the proof ~of (6) in
Lemma 6.9.

The following lemma may also be proved parallel to Lemma 6.10.

Lemma 6.15. Let ecE, and oxeWf. Then we have pn(e), [>e
if and only if eE=a.

We next prove the analogue of Lemma 6.11,

Lemma 6.16. Let ccE, and aeWH. Then we have B ,(Sm)t-o
if and only if eE[Sin]a.

Proof. We prove the following three propositions by induction on
. ‘

(A4) B, (Sim) o implies e [Sine.
(B) n=|e(+1)| implies Ea(-l—i)(sln) +-p; and En(—i}(sin) i~p, (if =(—i)eIly).

(C) eE=[S;n]e implies B, (Sm) o
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We first-remark that to prove (4,) it is sufficient to prove:
(A ) BI:EH:(E)(S n)

For, suppose at:ﬁ;(;)(siﬁ') and B',;(,,'(.S;,_n)' -0 ‘Then ‘We have Fﬁ,‘ée)(sin)
0, .and, hence. E—B,,(,,(S )= [Sirle (by (-, [SuD)). - -Since . et= By, (Sin),
we have sE=[S;n]x by the Soundness Theorem ' L

n=1:

Proof of (A1), eEB,(S:) is easily -vcriﬁed since el=I" and =§-[5,1]8
for any. pef. 4 : :
Proof of (By). This is proved just as in Lemma 6.7, :
Proof of (C;). This is proved similarly as in Lemma 6.11 by means of
(B,) in place of Lemma 6.7 ahd“L'emma 6.15 in place of Lemma 6.10.
n>1: _
Proof of (A,,) That sl:[Sin]B,,(B)(S;n 1) casﬂy follows from (A,,_I)
Next, suppose that B,,(,,J(Sjn 1)p;. By (4,-1) we _have

O C o eRISp—1]p;e

Henke, by the -definition of M, -we have el=pyand ¢

2 n=1=le(+}=el.

SHI-"I)OSe s=I[Sii] [S n— l]pJ 'Then, for some 6 sich that . e‘ Sun 5, we
hayve ‘

(3) 8=[S;n—11p;.
From (1) and (3), we see that g4, and hénce n<fig(+ D[l This means
n—1<ef,
which contradicts (2). Thus we have shown thatl '.
. S o '-'gil;tsi;]‘tsjn.;ljé;_ .
Suppose now B, (S;n—1)t<p;. Then we have ... . _ . -
@ . PR e={[Sm—11p;

by {C,—;). By (4) and by the definition of M, we have -
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() n—1<[le(-+l .

By way of contradiction, let .us suppose e={[Spm][S;n—1]p;. Then,
for some & such that £ S Su, 5, we have

. (6) L o 5[=[Sjn__1]ij

By (4) and (6) we have d=e@e;. By (6) we see that )
o - ey |

By {(5) -and '(7l), we have Je(+)|>8(+ . Hence we sec that i#]

and e(+i)=e Now, since £6#3 and &-51% 5, we have

. ®) - n<lle(+Dl=]ef-

On the otI;er halnd,ufrclim © we have n—126(+Nk- H.ence“
n2[é(+)(+dl= le(+DN = liel »

which - contradicts (8) Therefore ‘we see- that sI:[S,n]—l[SJn 1]17,
ﬂ(e)(sn 1)‘f‘<p_, : ST
Proof of (B,). First.we show that E,‘(-J,-‘-)(S,-n) p; from the assumption
that nLi%l]s(‘+i)|§. Since n>1, we can take a j#f such that.s=+.
Then |[e(+)(+j)|=n>n—1. Hence we have  +iq[Sm~ 1]pj So,
by (A,,.ml), we, have E,t(J,,)(Sjn I)Hp, Hence

©). o o [Sn][Sn— 1;1’1 € Bn(-_ﬂ)(si") .

Since |&(—i)(+ j)":n ‘ -1, we have e(—)E=[S;n—1]p;. Hence, by (C,_,),
we have Bn( ,)(Sjn D. |—pJ ‘Hence, we have P(n(—i), j, n—1, p)=T,

“so ‘that -

() (011 (a(—)>(T S [0n] [ 1~ 1Tp ).

From (9) and (10), we have E?,,(;E)I(S,-ﬁ)[——m(—i). Since B, .p(Sm)

_ m(+ i) v r(—1), we see, 'E,t(H)(S,n) Fa(+i). Hence B y(Sim) Fpp

“The proof of By ;(Sm)p; from the assumption that n=/a(+D)|
is obtained similarly by modifying the correspondmg proof of Lemma 6.7.
Thecase n> ||&(+i)| is now easy. '
Proof-of (C,). Similar to the proof of (C)).
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Corollary 6.17.
-P(m, i, n, ®)=T  if and only if E_,,(S,-n) o
By Lemma 6.5, we also have the following corollaryi.
Corollary 6.18. B, (S;n) is'a knowledge base for Sp.

By Corollary 6.17, we see that <€§,,(S,-n)>, F> s indeed a solu-
tion of $. Furthermore, by Lemma 6.13 and Corcllary 6.18, we see
that << B (Spn)>, ['> satisfies () and (##). Since we already know
that $ has at most one solution under (#) and (ﬁ-ﬁ) we have thus es-
tablished the following theorem. '

Theorem 6.19. Under the conditions (8} and ($%), $ has the
unigue solution < <B (Sm)>, >, : '

Thus we have seén that ' may be regarded as the formal counter-
part of the King’s order- m our formal system. The puzzle 1s then re-
duced to the problem of show;ng that:

(Pl) If |¢|=r and &=+, then B,,(c,(S n)p; and B,(Sm—Dt<p. -
We note that Wwe can moreover prove the following:
(P;) If |e]|=n and 5= —, then E,,(,,)(S;ft+1) -p; and B'-,,{c)(S;n)}cE-.

Though Lemma 6.16 gives us a solution to the problems (P,) and (P,),
we show below a sample proof for the case k=3 and e=++—:

We put 7;=1?(s)=p1)\p2Ab—3. Noting that [S,2]171[S,1] o€ B.(S5,2)
"since B (S,1)t~p,, and [O11(n(—+ —)=(T=[02][S,11p,)) el since
B+ —(S21)-p,, we can construct a proof of '

Ex(s 12)=py

as follows. (See F1g 6 4.)

‘ The model M= <Eq; v, v> has played a crucial role for the ‘solu-
tion of 8. We wish to point out that M may be considered as essential-
ly the unique and hence the inherent model of I. Let us consider any
KT5-model N=<Wy; ry, 0y> such that wol=l" ('in N) for some wgye Wy.
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e (g'S)'g Jo Jooid - 9 ‘B

Td(g's)'g

(TISYE (- A

(—+—=-xrre@'s)g

de@le)yg ‘(—+-x - ‘ S Yde(g'syg e MHvividtdvid vide(g's)g
c@isrg (—+ - T der v @syg
—(Z'syg wlits]  M[Sl-@'syg (—+ - deld Hersrg Wd(1's;'g
~d[1%s]-[e's] “dl1%s]  “d[1*s1e g [1*s1le sT (= + -  dePergls] W) gles]
~4d[1*s] “d[1%s] | 2d[%g] e [1's] Aw + =) CHe('s)g de0's)g
“[y7§1%dl1%s] L Sl () fdetdl1's]  Wdedl1's]
u W[yl CdltsI[zole L) (= + 310l (- + ) Sdefd “detd

2[5 (Cd[1%s] [0l = L) =(— + =) (—+ =)

wfrs]«wdlrislicole L (—+—Jue(—+ -
w[rrs]erdlisicol | le |
d[yeg]«*di%s] - <T.
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Let Wy={we Wy|(wo, W) ery(0, 1)}. - Then by restricting ry and vy to W,
we obtain a model Ny=<W,; ro, 0o > émdr':still have wol=l (in Ny).
Let No—No/XNo {where we take re]atlonal closure and characteristic func-
tion in the category o ;(Wi)). Then by Theorem 4.9, we have that Ny
is reduced and Wol=I (in No). We. also_have FolO, =Wy x W,. Hence
we have wi=l (in No) for all we Wo We will prove that N, is strongly
isomorphic to M. oL ) ‘
First, we define a fu_hctipn

h: WD;"")EO

by letting h(w) be the unique zeE, such that wi=n(s) (in N,). Since
wi=I and [O1]vp,el, we see that h is well-defined. Let we W, and
e=h(w). Take any formula «. Suppose eFo (in :.M);' Then we have
Fa(e), F»a by Lemma 6.15. “From this, since wel and wkne),
we have w|=cx Thus, we see that h is a homomorphlsm (in o S(Wff))

Let & be any element in E, Take any we WO Since |-['—
<01>n‘(é) we have wi= <O01>n(g).” Then there isaw EWO such that
w E=a(g). Hence we have h(w)=c¢. Thus we see that h is onto

Since No is reduced xﬂo-—xMoh is an 1nject10n by Lemmas 4.2 and
4.7. Hence h is also an injection. . ‘

Take ~any SeSp and nel. Let w,w eWo Suppose w St w',
Then wi= <S_n_.>n(h(w )  (n Np). Hence h(w)E= <Sn>n(h(w)) (in M).
This means h(w) -S25 h(w'). Next, suppose  h(w) ‘_-§-'l->.h(w'); Then h{w)
F <Sn>n(h(w)) (in M). Since. h7! is a homomorphism, we have w
= <Sn>a(h{w)) (in Ny). Hence thefe is some w* such that w3z,
and w"Ea(h(w"). So we have h(w") h(w) Since h is injective, we
have w"=w', so that w-——-a»w ‘ :

Thus we have proved that N0 is strongly lsomorphlc to M.

Remark., We: can analyze the wise men puzzle furthermore by a
method similar to the one we used in this §. We wish to discuss it in
a paper to be pubhshed _'|omt1y w1th McCarthy et al

Acknowledgments '

I would like to express my sincerest thanks to Professor John



s

KRIPKE-TYPE MODELS FOR SoME MobpaL Loarcs 467

Mcbarthy "of ‘Stanford’ University ‘who has’ g'ui‘ded‘ me to his '‘ingenious

itheory of modal amomatlzatmn of knowledge.

T would 11ke to’ express my hearty thanks to Professor Satoru Takasu
for his advice and encouragement. T o '
"I would like to express my thanks to Professors Kazuo Matsumoto

" Tsutomu Hosoi, Shigeru Igarastu and Hiroakira Ono and - to - Messss.

Osamu Sonobe Takeshi Hayashl and Satoru Naga1 for the;r helpfu] sug-
gestions and kind discussions with me. . -, oo

- References

[1] Bass, H., Finite monadic algebras, Proc.. Amer. Math, Soc., 5 (1958), 258-
- 268. oo T : .
[2] Cresswell, M.J, Frames and models in classical modal logic, in: Algebra and
. logic,. Lecture Notes in Math., 450 (1975),, 63-86, Springer, Berlin-Heidelberg-
. New York. Lo
[3] Fitting, M. C., Imumamsnc logzc mode[ rkeory and forcmg, North—Holland,
- Amsterdam, 1969

[4] Gentzen, G., Untersuchungen fiber das loglschc Schh&csen 1, II Marh:.. Z,

39 (1935), 176-210, 405-43L

[5] ———, Investigations into logical deductlon (Enghsh translatlon of [4]), in:

Szabo, M. E., ‘ed., The collected papers of Gerhard Gentzen, 68-131, North-
Holland, Amsterdam, 1969.
[6] Godel, K., Die Vollstindigkeit der Axiome des loglschen Funktloncnkalkuls,
. Monatsh, Math. Phys., 37 (1930), 349-360.

{7]' Gritzer, G., Universal algebra, Van Nostrand, Princeton, 1968.
_-[8] Hayashi, T., Notes on K and KI, private communication, 1975.
9] —, D:s_;unctwe property in McCarthy’s proposmonal knowiedge system,

private communication, 1976.
[10] Henkin, L., The completeness of the. first-order, functional caleulus, J. Symbo[r‘c
Logic, 14 (1949), 155-166.

" [11] :Hintikka, J.,, Kwnowledge and Belicf, an mrraductwn to the logxc of the twa no-

tions, Comell University Press, Ithaca ‘and London, 1962. \

[12] Itoh, M., On the relation between the modal - sentential log:c and monadic
predicate calculus I, I, 11 (in Japanese), J. Japan Assoc. for Phdasophy aof
Sciences, 3, 4, 6 (1955-56), 40-43, 14-19, 18-25. .

[13} Kreisel, G.,, A survey of proof theory,- J. Symbolic Logic, 33 (1968) 321-
188.

4] e, A survey of proof theory I, in: Festad LE, ed, Praceedmgs of
the Second Scandinavian Logic Symposium, North-HolIand Amsterdam, 1971,

{15] - Kripke, S., Semantical analysis of modal Ioglc I — normal modal proposmonal
calculi, Z. Math. Logik Grundlagen Math., 9 (1963), 67-96,

[16] ——— Semantical analysis of intuitionistic logic I, in: ‘Formal systems and
recursive functions, North-Holland, Amsterdam, 1965.



-468

Q7.

[18]

9]
[20]

[
22

[23]
[24]
[25]

" [26]
127

[28]
[29]
[30]

31
[32]

“[33]
[34]
331
[36]
B37]

[38]
391

MASAHIKO SATO

Lemmon, E. T, AIgcbralc semantics for modal logics I, II, J. Syrg?bo!:'c Logit,
31 (1966), 46-65, 192-218. IR
Lemmon, B.J. and Scott, D). S., Intensional logic, preliminary draft of initial
¢hapters by E. J. Lemmon, mimeographed, Stanford University, 1966.

Lyndon, R. C., Notes on Logic, Van Nostrand, Princeton, 1966.

Machara, 8., A general theory of completeness proofs Ann, of the Assoc. for

' ‘Phﬂo.s'ophy of Seience, 3 (1970), 242-256.

McCarthy, J., .private communication, 1975.
.. An axiomatization of knowledge and the example of the wise man

“puzzle, private communication, 1976, M-

Mitchell, B., Theory of categories, :Academic Press, New York and London,
1965. i
Ohnishi, M. and Matsumoto, K., Gentzen method in modal caleuli, Osake
Math. J., 9 (1957), 113-130 and 11 (1959), 115-120.
Prawitz, D., Natural deduction, a  proof-theoretical study, Almgvist & Wiksell,
Stockholm, 1965.

: , " Ideas and results in proof theory, in: Fenstad, J. E., ed., Proceed-
ings of the Second Seandinavian Logzc Symposium, Worth-Holland, Amsterdam,

1971 R

~-, Commenis on Gentzen-type procedures and the classical notion of
truth, in: Proof Theory Symposion, Kiel 1974, Lecture Notes in Maz‘h 00

* (1975), 290-319, ‘Springer, Berlin-Heideiberg-New York.. i

Rasiowa, H., An algebraic approaeh  to non—classacal lagics, Norlh-Holland,

" Amsterdam, 1974 P

Rasiowa, H. and Sikorski, R., The mathematics af memmathemancs, Mono-

" grafie Mathemtyczne 41, Warszawa, 1963. . S

Sato, M., Kripke-type models for McCarthy's proposmonal knowledge systern
uupubllshed memo, 1975,

Schitte, K., Vollstindige = Systeme modaler und intwitionistischer' Logik, Er-
gebnisse der Mathematik und ihrer Grenzgeblete, Band 42, Springer, Berlin—
Heidelberg-New York, 1968.

Scott, D, 8., Continuous lattices, 'in: - Toposes, a!gebrazc geometry. . and Iogrc.
Lecture Notes in Marth., 274 (1972), 97-136, Springer, Berlin-Heidelberg-New
York. o -
, Data types as lattices, in: Logic conference, Kiel 1974, Lecrure Notes
in Math., 499 {(1975), 579-651, Springer, Berlin-Heidelberg-New York.

Segerberg, K., An essay in classzcal modal logic, Fllosoﬁska Studier, . Uppsala
UnlverSIty, 1971.

Smullyan, R. M., First-order logxc, Ergebnisse der Mathmatik und ihrer Grenz-
gebiete, Band 43, Springer, Berlin-Heidelberg-New York, 1968.

Sonobe, O., A note on the modal logic S5, private communication, 1975,
Takahashi, M., A system of simple type theory of Gentzen style with inference
on extensionality and the cut- elumnauou in i, Comm. Math. Univ. Sancti
Pauli, 18 (1970), 129-147,

Takeuti, G., Proof theory, North-Holland, Amsterdam, 1975, -

Zucker, J.,, The correspondence between cut-elimination- and normalization,
Ann. Math. Logié, 7 (1974), 1-155. ‘

vy




