
Truth by Evidence

Masahiko Sato

Graduate School of Informatics

Kyoto University



Quiz

Mathematicians study mathematics.

Logicians study what?

1



Quiz (cont.)

Mathematicians study mathematics.

Logicians study metamathematics.

Computer scientists study what?

2



Quiz (cont.)

Mathematicians study mathematics.

Logicians study metamathematics.

Computer scientists also study metamathematics.

3



Observations and a Question

Mathematicians study mathematical objects such as numbers,

rings etc.

Logicians study metamathematical objects such as terms, for-

mulas, proofs etc. from logical point of view.

Computer scientists also study metamathematical objects such

as terms, formulas, proofs etc. but mainly from computational

point of view.

Since metamathematics is also mathematics, metamathematical

objects are mathematical objects.

But, what is a mathematical object?

4



My Answer

My answer is that a mathematical object is a symbolic expres-

sion sitting in the universe of expressions equipped with equality

relations among expressions.

• The universe is open ended.

• There are two equality relations: intensional equality and

extensional equality.

Intensional equality is computational equality and can be me-

chanically checked by computation. Extensional equality is logi-

cal equality and can be checked by reasoning.

5



Motivation

We wish to create a computer environment for doing mathemat-

ics in it.

Doing mathematics means computing and proving.

6



Ideas

Computation and Logic are closely related, so they should be

studied together rather than separately.

At Kyoto University we offer an under graduate course on Com-

putation and Logic, where students can try all the materials

covered by the course on computers.

We provide a computer environment called CAL for the above

purpose. CAL is implemented in Emacs Lisp and can be run

within an Emacs buffer.

7



What are common between Computation and Logic?

• The notion of variable plays the crucial role.

• The notions of judgment and derivation plays the crucial role.

• They both manipulate symbols and they are both formalis-

able.

• There are structural isomorphisms called the Curry-Howard

isomorphisms between certain computational structures and

logical structures.

It is therefore more efficient to study them at the same time

rather than separately!

8



Formal vs. Informal

A mathematical entity is formal if it can be implemented on a

computer. A mathemaical notion is formal if it can be defined

within a system implemented on a computer.

For example, natural numbers 0, 1, 2 etc. are formal entities and

the notions of natural number, even natural numbers and prime

natural numbers are formal notions.

Hilbert’s formalism claims that all the mathematics are formal-

izable.

9



Formal vs. Informal (cont.)

Informal: If x = y, then y = x.

Semi-formal: x = y ⇒ y = x.

Formal: x = y ⊃ y = x.

In the beginning, we must go from informal to formal, but once

a certain amount of formal objects and notions are established,

we can go from formal to informal.

10



Natural Framework

It is therefore important to have a computer environment which

supports formalisation of mathematics, including computation

and logic.

We have designed and implemented such a framework which we

call Natural Framework (NF).

Concepts and Objects (Derivation Games)
Judgments and Derivations (NF)

Expressions (CAL)
Symbolic Expressions (Emacs Lisp)

(Structure of NF)

11



Judgments and Derivations

We think that the two most fundamental notions in mathematics

are judgment and derivation, since a mathematical statement is

expressed as a judgment and its truth is established by means of

a proof which may also be called a derivation.

For example, a theorem is a judgment which has a derivation.

Now, in a derivation of a mathematical judgment, both logic and

computation play essential roles.

So, we may assert the following:

Computation and Logic

= Science of Judgment and Derivation

12



Developing meaningful mathematics in NF

In order to develop mathematics formally and at the same time

intuitionistically meaningful way, we introduce a meaning theory

of judgments as a refinement of Brouwer-Heyting-Kolmogorov

interpretation.

According to BHK interpretation, the meaning of a judgment

(proposition) is given by defining what is a construction (which

is an abstract counterpart of proof) of it. For example, a con-

strution of a judgment A ⊃ B is a method (or a function) f ,

which for any construction a of A yields a construction of B by

applying the method f to a, that is, f(a) gives a construction of

B.

13



Developing meaningful mathematics in NF (cont.)

We modify BHK interpretaion by using our basic principle that

a mathematical object is an expression. Thus, for example, a

function is just a program which describes methods in a concrete

way.

We design our theory of expressions so that we can represent

different syntactic categories of judgments and objects naturally.

Meaning of a judgement expression will be given in terms of an

evidence which is also an expression, and meaning of an object

expression is given by its denotation which is also an expression.

14



Theory of Expressions

Requirements for the theory.

• Can be used as a common notation system for various formal

languages.

• Supports higher order abstract syntax.

• Must be simple enough.

15



Theory of Expressions (cont.)

We define an arity as an expression of the form:

κ[κ1, . . . , κn]

where κ and κi are either o (objects) or j (judgments). When

n = 0, we will simply write κ for κ[]

An arity is saturated (unstaturated) if n = 0 (n > 0).

Unsaturated variables (constants) are also called higher order

variables (constants) since they have n argument places to be

filled in by expressions.

Saturated variables (constants) are also called first order variable

(constants).

16



Theory of Expressions (cont.)

Expressions will be built up by combining variables and constants

appropriately. With each variable or a constant we associate a

unique arity.

We write

x @ α (c @ α)

if a variable x or a constant c has arity α.

17



Theory of Expressions (cont.)

Expressions are defined as follows. We say that an expression is

an object expression (judgment expression) if we have e : o (e : j)

by the following rules.

x @ κ[κ1, . . . , κn] a1 : κ1 · · · an : κn
x[a1, . . . , an] : κ

var

c @ κ[κ1, . . . , κn] a1 : κ1 · · · an : κn
c[a1, . . . , an] : κ

const

x @ α a : κ
(x)[a] : κ abs

x @ o a : j b : κ
(x :: a)[b] : κ cabs

18



Environments

We will evaluate expressions in environments.

If x is a variable of arity κ[κ1, . . . , κn] and e is an expression of

the form (y1, . . . , yn)[a] where yi @κi and a : κ, then we say that

e is assignable to x and call the form:

x = e

a definition.

ρ = {x1 = e1, . . . , xk = ek}

is an environment if x1, . . . , xk are distinct variables, and its do-

main |ρ| is {x1, . . . , xk}.

19



Instantiation

Given an expression e and an environment ρ, we define an expres-

sion [e]ρ as follows. We choose fresh local variables as necessary.

1. [x]ρ := e if x is first order and x = e ∈ ρ.

2. [x[a1, . . . , an]]ρ := [e]{x1=[a1]ρ,...,xn=[an]ρ}
if x is higher order and x = (x1, . . . , xn)[e] ∈ ρ.

3. [x[a1, . . . , an]]ρ := x[[a1]ρ, . . . , [an]ρ] if x 6∈ |ρ|.

4. [c[a1, . . . , an]]ρ := c[[a1]ρ, . . . , [an]ρ].

5. [(x)[a]]ρ := (x)[[a]ρ].

6. [(x :: a)[b]]ρ := (x :: [a]ρ)[[b]ρ].

20



Instantiation (cont.)

Well-definedness

An environment ρ is first order if all the variables in |ρ| are first

order, and it is higher order if |ρ| contains at least one higher

order variable.

1. First, carry out the above inductive definition for first order

environments.

2. Then, carry out the above inductive definition for higher or-

der environments.

21



Instantiation (cont.)

Remark.

It is essential to distinguish first order variables and higher order

variables.

Without the distinction, evaluation of expressions may fail to

terminate.

[x[x]]{x=(y)[y[y]]}
≡ [y[y]]{y=[x]{x=(y)[y[y]]}}
≡ [y[y]]{y=(y)[y[y]]}
≡ · · ·

22



Instantiation (cont.)

Remark.

It is essential to distinguish first order variables and higher order

variables.

Without the distinction, evaluation of expressions may fail to

terminate.

[x[x]]{x=(y)[y[y]]}
≡ [y[y]]{y=[x]{x=(y)[y[y]]}}
≡ [y[y]]{y=(y)[y[y]]}
≡ · · ·

x is saturated, but x is unsaturated.

23



Developing mathematics in NF

Mathematics in NF is open ended in the sense that one can

always extend it by introducing new notions and objects. Intro-

duction of new notions and objects is done in two steps.

The first step is syntactical and we add new constants for new

notions/objects. Expressions are then automatically extended.

The second step is semantical and we assign meaning to newly

created expressions. We will assign meaning to object expres-

sions and judgment expressions.

In the third step we add inference rules for deriving newly created

judgments.

24



Assigning meaning to object expressions

We assign meaning to object expressions by the evaluation rela-
tion

e ⇓ v

where e and v are both object expressions.

We say that e has value v if the above relation holds.

An object expression v is said to be a value expression (or, simply
value) if some expression e has value v.

The evaluation relation should be defined in such a wary that
the following holds.

• If e ⇓ v1 and e ⇓ v2, then v1 and v2 are the same expression.

• If v is a value expression, then v ⇓ v.

An expression may not have a value.

25



Assigning meaning to Judgments

We can classify judgments into the following three forms.

1. Universal Judgment: (x)[J].

2. Conditional Judgment: (x :: H)[J].

3. Basic Judgment: c[a1, . . . , an] where c @ j[κ1, . . . , κn] and ai :

κi.

Meaning of a judgement is determined by the relation:

e :: J

which we read “e is an evidence of J”, where e is an object

expression and J is a judgment.

26



Assigning meaning to Judgments (cont.)

The following rule defines the evidence relation for universal judg-
ments.

If e ⇓ (x)[d] and [d]{x=a} :: [J]{x=a} for all a which is
assignable to x, then e :: (x)[J].

The meaning of conditional judgments is given by the following
rule.

If e ⇓ (x)[d] and [d]{x=a} :: [J]{x=a} for all a such that
a :: H then e :: (x :: H)[J].

We must also add rules which define meaning of new judgment
constants.

We will call these rules meta rules. Meta rules are all introduction
rules if we borrow the terminology of natural deduction style
type/logical systems.

27



Getting started

We have described general schema of assigning meaning to ex-

pressions, but we did it concretely only for universal and condi-

tional judgments.

Next step is to add concrete object constants and judgment

constants, and give meaning to them. We add the following

four object constants and two judgment contstants.

• Object constants: ok@ o, nil@ o, cons@ o[o, o], apply@ o[o, o].

• Judgment constants: ⇓ @j[o, o], :: @j[o, j].

28



Getting started (cont.)

We will informally write f(e), e ⇓ v and e :: J as follows.

f(e) ≡ apply[f, e],

e ⇓ v ≡ ⇓[e, v],
e :: J ≡ ::[e, J].

nil and cons are used to construct list of objects. So, for exam-

ple, (a, b) stands for cons[a, cons[b, nil]].

29



Rules for evaluating object expressions

The meta rules for evaluating object expressions we now have

are as follows.

ok ⇓ ok

nil ⇓ nil
a ⇓ u b ⇓ v

cons[a, b] ⇓ cons[u, v]

(x)[F] ⇓ (x)[F] (x :: H)[F] ⇓ (x)[F]

f ⇓ (x)[F] [F ]{x=e} ⇓ v

f(e) ⇓ v

30



Rules for basic judgments

Meta rules for newly added basic judgments are as follows.

d ⇓ ok e ⇓ v
d :: e ⇓ v

d ⇓ v e ⇓ v e :: J
d :: e :: J

Note. Since ⇓ has arity j[o, o] and :: has arity j[o, j], d :: e ⇓ v can-

not be parsed as (d :: e) ⇓ v. Therefore we have d :: e ⇓ v ≡ d :: (e ⇓ v).

Similarly, we have d :: e :: J ≡ d :: (e :: J).

31



Declaration and Context

Any mathematical argument is done in a context, namely, we

assume certain amount of assumptions (hypotheses) whenever

we make a mathematical argument.

In NF, a context is a sequence of declarations, where a decla-

ration is either a expression variable declaration or a derivation

variable declaration.

• An expression variable declaration is simply a variable x and

it declares that x stands for an arbitrary expression.

• A derivation variable declaration is of the form X::J and it

declares that the variable X stands for an arbitrary derivation

of the judgment J.

32



Formal Rules for Derivations

We now introduce formal rules for constructing derivations.

Any derivation d constructed by these rules will become an evi-

dence for a judgment J and this J can be uniquely determined

from d.

Any derivation d has another important property that from d one

can uniquely recover how d is derived by the rules for construction

derivations.

This property is crucial for commucating derivations among hu-

mans and also for mechanical checkability of the corectness of

derivations.

33



Formal Rules for Derivations (cont.)

All the premises and conclusions of the following rules have the

form:

Γ ` d :: J

where Γ is a context such that (Γ)[d :: J] becomes a closed

judgment. Actually, the above form is an abbreviation of (Γ)[d ::

J].

For example, if A is a variable of arity j and x is a variable of

arity o, then

A, x :: A ` x :: A ≡ (x, x :: A)[x :: A] ≡ (x)[(x :: A)[x :: A]].

34



Formal Rules for Derivations (cont.)

Assumption

Γ, x :: H,∆ ` x :: H

Universal judgment

Γ, x ` d :: J
Γ ` (x)[d] :: (x)[J]

Γ ` f :: (x)[J]
Γ ` f(e) :: [J]{x=e}

Conditional judgment

Γ, x :: H ` d :: J
Γ ` (x :: H)[d] :: (x :: H)[J]

Γ ` f :: (x :: H)[J] Γ ` e :: H
Γ ` f(e) :: [J]{x=e}

35



Formal Rules for Derivations (cont.)

Evaluation judgment

Γ ` mkeval[ok, ok, ()] :: ok ⇓ ok

Γ ` mkeval[nil, nil, ()] :: nil ⇓ nil

Γ ` d1 :: a ⇓ u Γ ` d2 :: b ⇓ v
Γ ` mkeval[cons[a, b], cons[u, v], (d1, d2)] :: cons[a, b] ⇓ cons[u, v]

Γ ` d :: e ⇓ v
Γ ` mkeval[evi[e], v, (d)] :: evi[e] ⇓ v

Γ ` mkeval[(x)[F], (x)[F], ()] :: (x)[F] ⇓ (x)[F]

36



Γ ` d1 :: f ⇓ (x)[F] Γ ` d2 :: [F ]{x=e} ⇓ v

Γ ` mkeval[f(e), v, (d1, d2)] :: f(e) ⇓ v

Γ ` mkeval[(x :: H)[F], (x :: H)[F], ()] :: (x :: H)[F] ⇓ (x :: H)[F]

Γ ` d1 :: f ⇓ (x :: H)[F] Γ ` d2 :: [F ]{x=e} ⇓ v

Γ ` mkeval[f(e), v, (d1, d2)] :: f(e) ⇓ v

Γ ` d :: eval[e, v] ⇓ w
Γ ` mkeval[mkeval[e, v, D], w, (d)] :: mkeval[e, v, D] ⇓ w

Γ ` d :: e ⇓ v
Γ ` mkeval[mkevi[e], v, (d)] :: mkevi[e] ⇓ v



Evidence judgment

Γ ` d :: J
Γ ` evi[d] :: d :: J

Γ ` e :: d :: J
Γ ` mkevi[e] :: J



Evaluation rules for additional object contstants

e ⇓ v
evi[e] ⇓ v

e ⇓ v
mkevi[e] ⇓ v

mkeval[e, v, D] ⇓ ok

37



What we teach

• Expressions

• Derivation Games

• Formal Syntax and Definitional Equality

• Propositional Logic in Natural Deduction style (NJ)

• Propositional Logic in Hilbert’s style

• Simply Typed λ-calculus

• Reduction of NJ derivations and λ-terms

• Curry-Howard Isomorphism

• Heyting Arithmetic

38


