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Abstract
Under the Curry–Howard isomorphism, the syntactic structure of programs can be modeled using
birelational Kripke structures equipped with intuitionistic and modal relations. Intuitionistic relations
capture scoping through persistence, reflecting the availability of resources from outer scopes, while
modal relations model resource isolation introduced for various purposes.

Traditional modal languages, however, describe only modal transitions and thus provide limited
support for expressing fine-grained control over resource availability. Motivated by this limitation, we
introduce Bounded Modal Logic (BML), an experimental extension of constructive modal logic whose
language explicitly accounts for both intuitionistic and modal transitions.

We present a natural-deduction proof system and a Kripke semantics for BML, together with a
Curry–Howard interpretation via a corresponding typed lambda-calculus. We establish metatheoretic
properties of the calculus, showing that BML forms a well-disciplined logical system. This provides
theoretical support for our proposed perspective on fine-grained resource control in programming
languages.
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1 Introduction

Kripke Structure in Lambda-Terms

The Curry–Howard isomorphism points out the correspondence between logic and programs [9,
31]. While this correspondence is observed via those between proof systems and typed
lambda-calculi, we can apply semantical notions from logic to typed lambda-calculi. For
example, Mitchell and Moggi [19] generalized Kripke semantics for intuitionistic logic to
understand typed lambda-terms in simply typed lambda-calculus.

More informally, the scoping structure of programs can be understood through the lens of
Kripke semantics for intuitionistic logic. In this view, scope inclusion induces an intuitionistic
accessibility relation satisfying persistency: variables defined at an outer scope remain available
at inner scopes. Figure 1a illustrates this correspondence.

In advanced settings, various modal lambda-calculi have been developed to model
computational effects [20], information-flow control [1,29], multi-stage programming [6,7],
distributed programming [23] and functional reactive programming [3, 14] among others. They
use modal types as a means to introduce appropriate isolation for resources.

We can also observe Kripke structures in modal lambda-calculi. As an example, we
consider Kripke/Fitch-style S4 modal lambda-calculi [5, 7, 38], whose correspondence with
Kripke semantics for constructive modal logic has been studied in the literature. Figure 1b
illustrates a modal lambda-term and its associated structure. In addition to intuitionistic
transitions corresponding to scope inclusion, the structure includes modal transitions induced
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(a) Simply typed lambda-calculus.
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(b) Kripke-style modal lambda-calculus [7].

let sqr x = x * x in
let code = ⟨ sqr 10 ⟩ in

run code1 2 4 3
3
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(c) MetaML-style staged program.

Figure 1 Kripke structure of lambda-terms. Here, and represent intuitionistic and
modal relations, respectively.

by box and unbox constructs. These modal transitions are non-persistent and introduce
isolation between scopes, capturing controlled communication of resources in programs.

From this viewpoint, we can regard birelational Kripke structure as capturing resource
control taking place in lambda-terms: intuitionistic relations coincide with nested scopes
allowing persistent use of resources, while modal transitions coincide with resource isolation
where communications need to be explicitly mentioned by modal operators.

Limitation of the Traditional Modal Language

The traditional modal language refers only to modal relations, and this is not sufficient
to describe richer resource control for some practical programs. We consider Multi-Stage
Programming (MSP), whose correspondence to modal logic is well studied [6, 7, 24, 37, 39]. In
particular, we are interested in modal typing disciplines for MetaML-style MSP [21,33–35].

The key charasteristics of MetaML-style MSP are as follows: 1. code fragments are
represented by quasi-quotation syntax with brackets ⟨· · · ⟩ and splices ~· · · ; 2. quotations
allow using variables defined outside; and 3. code fragments can be evaluated at runtime via
run. Figure 1c is such an example of MetaML-style stage program. We define a variable code
as an open code fragment with a variable sqr, and evaluate it under the scope of sqr by
run. We can also consider a birelational Kripke structure for this program, as presented on
the right side. Its structure is more complex than that of previous examples. We see both
intuitionistic and modal relations from 2 to 3: the intuitionistic relation is required to use sqr
via persistency, while the modal one is introduced by the quotation. Here, we can regard
modal transitions as isolation between stages.

The question here is what the type for ⟨ sqr 10 ⟩ would be in this example. S4 modality
seems appropriate because we have run [7]. However, □int does not type ⟨ sqr 10 ⟩: this
type asserts that it can pass an integer value via any modal transitions, but this code fragment
is only valid under the scope of sqr. Hence, we want to relax modal types to state “we can
embed an integer expression to a scope where sqr is available via persistency.”

It is worth noting that such patterns are observed not only in multi-stage programming. In
the context of distributed programming, there can be values that are sent to agents satisfying
specific resource constraints. In the context of computational effects, we might have effects
that are valid under specific scopes. Here, we want to develop an extension to the traditional
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∀𝛾 :⪰ !. □⪰𝛾(A → B) →□⪰𝛾A →□⪰𝛾B (K)
□⪰!A → A (T)
∀𝛾 :⪰ !. □⪰𝛾□⪰𝛾A →□⪰𝛾A (4−1)
∀𝛾 :⪰ !. □⪰𝛾A →□⪰𝛾□⪰𝛾A (4)
∀𝛾1 :⪰ !. (□⪰𝛾1A → ∀𝛾2 :⪰ 𝛾1. □⪰𝛾2A) (Mon)
∀𝛾1 :⪰ !. ((∀𝛾2 :⪰ 𝛾1. □⪰𝛾2A) →□⪰𝛾1A) where 𝛾2 /∈ FC(A) (Mon−1)
∀𝛾1 :⪰ !. (∀𝛾2 :⪰ 𝛾1. □⪰𝛾2A →□⪰𝛾2B) →□⪰𝛾1(A → B) where 𝛾2 /∈ FC(A) ∪ FC(B)

(K−1∗)

Figure 2 Tautologies in BML. ! represents global scope, and FC(A) is a set of classifiers occurs
freely in A.

modal language, which is applicable to patterns of this kind.

Modal Logic Reasoning Persistency

As an answer to the problem above, we propose Bounded Modal Logic (BML). The language
of BML is defined as follows:

A, B ::= p | A → B | □⪰𝛾A | ∀𝛾1 :⪰ 𝛾2. A

We see objects like 𝛾, which we call classifiers. Classifiers are atomic objects that represent
elements in a Kripke structure, which we can regard variable scopes. We have a special
classifier ! that represents the global scope. Then, bounded modality □⪰𝛾A states that it can
pass a term of A via modal transition, into scopes where we can use resources from 𝛾 via
persistency, like the following figure:

𝛾

⊨ □⪰𝛾A

⊨ A

1

Bounded modality allows ones to type expressions with relaxed isolation. In the context of
MSP, □⪰𝛾A can be read as a type for “code fragments of A expression which is valid under
the scope 𝛾,” allowing to typing program in Figure 1c.

On the other hand, polymorphic classifier quantifier ∀𝛾1 :⪰ 𝛾2. A introduces a quantification
over 𝛾1 with lower bound 𝛾2 with regard to intuitionistic transition. Such a quantifier is useful
to generalize functions with classifiers: ∀𝛾1 :⪰ 𝛾2. (□⪰𝛾1A → □⪰𝛾1A) can be interpreted
as a type for function over code fragments with arbitrary scope 𝛾1, which is nested within
𝛾2. Thus, BML has an aspect of first-order predicate logic whose domain is a birelational
Kripke structure. Note that atomic propositions in BML are only propositional variables, and
relational statements like 𝛾1 ⪯ 𝛾2 or 𝛾1 ⊑ 𝛾2 do not form a proposition on their own, unlike
ordinary predicate logic. As we shall see later, those assertions will be treated as first-class
judgments in our proof system.

In this way, we can regard BML as combining modal logic and first-order predicate
logic in a novel manner. We give a list of valid propositions of BML in Figure 2. K, T,
4−1, 4 are generalization of common modal axioms. Mon, Mon−1 show that □⪰𝛾A and
∀𝛾′ :⪰ 𝛾. □⪰𝛾′A are equivalent, characterizing persistent nature of classifiers. K−1∗ is one of
interesting examples using polymorphic classifier quantifiers, which acts like an inverse of K.

CVIT 2016
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Our Contribution

This paper aims to establish a theoretical foundation for BML as a constructive modal
logic, together with its computational counterpart. We first introduce a formal definition
of a birelational Kripke structure, called a BML-structure, which serves as the underlying
semantic and conceptual basis for the logic (Section 2). Building on this structure, we
define a natural-deduction proof system (Section 3) and a Kripke semantics (Section 4) for
BML, and prove their correspondence via soundness and completeness (Section 5). We then
introduce a corresponding modal lambda-calculus and study its metatheory, thereby providing
a computational interpretation of BML (Section 6). Finally, we prove that BML generalizes
CS4 from both semantic and proof-theoretic perspectives (Section 7).

Note that we omit detailed definitions and proofs from the paper due to page limitation.
One can find such details in Appendix.

2 Syntactic Structure of Modal Lambda-Terms

Before introducing BML, we formally define birelational Kripke structure – we call it
BML-structure – that captures the structure of modal lambda-terms.

▶ Definition 2.1 (BML-Structure). A BML-structure is a quintuple ⟨𝐷, ⪯, ⊑, 𝑉 , !⟩ where
⟨𝐷, ⪯⟩ is a preordered set with
a root !, the least element of 𝐷 with respect to ⪯;
⊑ is a preorder on 𝐷 with stability1 condition (⪯) ⊆ (⊑), or equivalently: left-stability
(⪯ ; ⊑) ⊆ (⊑) and right-stability (⊑ ; ⪯) ⊆ (⊑);
𝑉 assigns each atom 𝑝 to an upward-closed subset of 𝐷.

We regard BML-structure as the essence of syntactic structure of programs, where the
intuitionistic relation ⪯ denotes scope inclusion and the modal relation ⊑ denotes resource
isolation. 𝐷 is a set of scopes or locations in programs. ! represents the global scope, which
behaves as a bottom element with regard to ⪯. We impose the stability condition for the
modal relation in parity with the proof system that we introduce in Section 3.

Before we define proof system of BML, we discuss how we can find BML-structure in
Kripke/Fitch-style proof systems [5, 7, 38], which inspired the design of our proof system for
BML. This introduces several key notions that we will use in the next section. We define a
proof system for constructive variant of S4 in Kripke/Fitch-style in the literature. We derive
propositions via the judgment Γ ⊢S4 𝐴, where a context Γ has the following structure.

Γ, Δ ::= 𝜀 | Γ, 𝐴 | Γ, ▶

Davies and Pfenning [7] mention that ▶ represents modal transition, and propositions
between each ▶ represent assumptions holding at a specific world.2 We elaborate this idea to
make a correspondence between a context and a BML-structure. For example, a context
p, ▶, p, q, ▶ corresponds to the BML-structure below:

! 1
⊨ p

2 3
⊨ p

4
⊨ q

5
1

1 The term ‘stable’ is borrowed from Stell, Schmidt, and Rydeheard [32].
2 To be precise, Davies and Pfenning [7] introduced a stack structure over contexts to represent modal

transitions between contexts. In our definition, we can regard ▶ to delimit contexts. With regard to
Fitch-style proof systems [5, 38], we can identify ▶ with 🔓 in their definition of contexts.
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and represent ⪯ and ⊑, respectively. Here, we can regard a context to carry three
kinds of information:
1. A BML-structure itself;
2. Assumptions holding at each element of the BML-structure; and
3. The current position in the BML-structure where deduction is performed (drawn as a

yellow double circle).

Particularly, we use the notion of the current position of a BML-structure; we simply call
it a position in the rest of the paper. Then, each item in a context works in the following way:

An empty context 𝜀 corresponds to a BML-structure with a single element !. No
assumption holds there, and the position is !.
When adding an assumption 𝐴 to Γ, it introduces a new element with an assumption 𝐴.
The position moves to the new element, and it introduces ⪯ along with the movement.
When adding ▶ to Γ, it introduces a new element, and the position moves to it. It also
introduces ⊑ along with the movement.

We can informally understand derivation rules with respect to BML-structure of contexts,
regarding them as Kripke models for intuitionistic modal logic [2, 30]. We explain selected
three rules from the viewpoint of BML-structure:

Hyp
▶ /∈ Γ2

Γ1, 𝐴, Γ2 ⊢S4 𝐴

□-I
Γ, ▶ ⊢S4 𝐴

Γ ⊢S4 □𝐴

□-E
Γ1 ⊢S4 □𝐴

Γ1, Γ2 ⊢S4 𝐴

Hyp: As Γ2 does not include ▶, the relations introduced by Γ2 are all ⪯. As ⪯ is reflexive
and transitive, we can leverage persistency to conclude that 𝐴 holds at the position of
Γ1, 𝐴, Γ2.

□-I: The premise Γ, ▶ ⊢S4 𝐴 states that 𝐴 holds at the element that is reachable by ⊑ from
the position of Γ. Hence, we can conclude □𝐴 at the position of Γ.

□-E: As the relations introduced by Γ2 include both ⪯ and ⊑, we get a single transition with
⊑ using the stability condition and reflexivity/transitivity of ⊑. Hence, we can safely
conclude 𝐴 at the position of Γ1, Γ2.

When we assign lambda-terms to these rules, we can regard contexts to include the essence
of the structure of lambda-terms. Thus, it is natural to find correspondence between contexts
and BML-structure. In Section 3 and Section 6, we develop a richer context structure and
lambda-terms for BML.

3 Natural Deduction

Having introduced the underlying BML-structure as a conceptual basis, we now formalize
reasoning over it by presenting a natural-deduction proof system. This proof system is
designed to internalize the intuitions observed in Kripke/Fitch-style proof systems. First,
we annotate classifiers to each item of a context, following the tradition of labelled proof
systems [8, 25,28]. This allows us to refer to elements in a BML-structure.

Γ, Δ ::= 𝜀 | Γ, A𝛾 | Γ, ▶𝛾

We also use an initial classifier ! to refer to an empty context. We then extend the structure
of contexts as follows (For clarity, we color classifiers if they are newly introduced):

Γ, Δ ::= 𝜀 | Γ, A𝛾 | Γ, ▶𝛾1:⪰𝛾2 | Γ, ◀𝛾 | Γ, 𝛾1 :⪰ 𝛾2

CVIT 2016
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!
1

(a) 𝜀.

! 𝛾1
⊨ p

𝛾2

⊨ q2

(b) p𝛾1 , q𝛾2 .

! 𝛾1
⊨ p

𝛾2
⊨ q

𝛾3
3

(c) p𝛾1 , q𝛾2 , ▶𝛾3:⪰!.

! 𝛾1
⊨ p

𝛾2

⊨ q

𝛾3
4

(d) p𝛾1 , q𝛾2 , ▶𝛾3:⪰!, ◀𝛾1 .

! 𝛾1
⊨ p

𝛾2

⊨ q

𝛾3 𝛾4
5

(e) p𝛾1 , q𝛾2 , ▶𝛾3:⪰!, ◀𝛾1 , 𝛾4 :⪰ 𝛾3.

Figure 3 BML contexts and its corresponding BML-structure. and indicate intuition-
istic and modal transitions, respectively. Each yellow double circle indicates the current position of
each context.

The behavior of an empty context and A𝛾 does not change. ▶𝛾2:⪰𝛾1 introduces a intuitionistic
relation from 𝛾1 to 𝛾2, in addition to a modal relation. ◀𝛾1 is a new item that only moves
position to 𝛾1, which requires that there is a modal transition in the opposite direction of the
movement. 𝛾2 ⪰ 𝛾1 is also a new item that introduces a new element 𝛾2, and an intuitionistic
relation from 𝛾1 to 𝛾2. We summarize the behavior of each item in Table 1. Figure 3 provides
concrete examples for contexts and corresponding BML-structures.

We proceed with formal definitions. First we define pos(Γ), the position of Γ.

▶ Definition 3.1 (Position of Contexts).

pos(𝜀) = ! pos(Γ, x :𝛾 A) = 𝛾 pos(Γ, ▶𝛾1:⪰𝛾2) = 𝛾1

pos(Γ, ◀𝛾) = 𝛾 pos(Γ, 𝛾1 :⪰ 𝛾2) = pos(Γ)

For the sake of space, we introduce a shorthand notation for positions.

▶ Notation. We write Γ𝛾 to represent Γ with its position 𝛾. When we write a context with
multiple meta-variables like Γ𝛾1

1 , Γ𝛾2
2 , then it means that pos(Γ1) = 𝛾1 and pos(Γ1, Γ2) = 𝛾2

hold. Note that it does not mean pos(Γ2) = 𝛾2 because Γ2 can be empty.

We write DomC(Γ) for a set of classifiers defined in Γ, corresponding to elements in a
BML-structure. Then, Γ ⊢ 𝛾1 ⪯ 𝛾2 and Γ ⊢ 𝛾1 ⊑ 𝛾2 describes the intuitionistic and modal
relations between classifiers, whose derivation rules can be found in Figure 4. ⊴-Refl and
⊴-Trans describes reflexive and transitive nature of these relations. ⊑-Lift states that ⪯ can

Table 1 Summary of the context syntax: what happens when Γ is extended with each item.
Colored classifiers indicate that they are introduced by the items.

Item Moves position?
(to)

Assumptions added Consumed
by(⪯) (⊑) Proposition

A𝛾 Yes (𝛾) pos(Γ) ⪯ 𝛾 — A holds at 𝛾 (→-I)
▶𝛾2:⪰𝛾1 Yes (𝛾2) 𝛾1 ⪯ 𝛾2 pos(Γ) ⊑ 𝛾2 — (□-I)
◀𝛾 Yes (𝛾) — —1) — (□-E)

𝛾2 ⪰ 𝛾1 No 𝛾1 ⪯ 𝛾2 — — (∀-I)

1) 𝛾 ⊑ pos(Γ) is not added as an assumption, but is required to be deduced from Γ.
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1. ⊴ ∈ {⪯, ⊑}. 2. ⊢ Γ : ctx is assumed.

⊴-Refl
𝛾 ∈ DomC(Γ)

Γ ⊢ 𝛾 ⊴ 𝛾

⊴-Trans
Γ ⊢ 𝛾1 ⊴ 𝛾2 Γ ⊢ 𝛾2 ⊴ 𝛾3

Γ ⊢ 𝛾1 ⊴ 𝛾3

⊑-Lift
Γ ⊢ 𝛾1 ⪯ 𝛾2

Γ ⊢ 𝛾1 ⊑ 𝛾2

⪯-Hyp

Γ𝛾1
1 , A𝛾2 , Γ2 ⊢ 𝛾1 ⪯ 𝛾2

⪯-Cls
𝛾1 :⪰ 𝛾2 ∈ Γ

Γ ⊢ 𝛾2 ⪯ 𝛾1

⊑-▶

Γ𝛾1
1 , ▶𝛾2:⪰𝛾3 , Γ2 ⊢ 𝛾1 ⊑ 𝛾2

⪯-▶

▶𝛾1:⪰𝛾2 ∈ Γ
Γ ⊢ 𝛾2 ⪯ 𝛾1

Figure 4 Derivation rules for Γ ⊢ 𝛾1 ⪯ 𝛾2 and Γ ⊢ 𝛾1 ⊑ 𝛾2.

WF-◀
⊢ Γ𝛾 : ctx Γ𝛾 ⊢ 𝛿 ⊑ 𝛾

⊢ Γ𝛾 , ◀𝛿 : ctx

Hyp
A𝛾1 ∈ Γ𝛾2 Γ𝛾2 ⊢ 𝛾1 ⪯ 𝛾2

Γ𝛾2 ⊢ A

→-I
Γ, A1

𝛾 ⊢ A2 𝛾1 /∈ FC(A2)

Γ ⊢ A1 → A2

→-E
Γ ⊢ A1 → A2 Γ ⊢ A1

Γ ⊢ A2

□-I
Γ, ▶𝛾1:⪰𝛾2 ⊢ A 𝛾1 /∈ FC(A)

Γ ⊢ □⪰𝛾2 A

□-E
Γ𝛾1 , ◀𝛾2 ⊢ □⪰𝛾3 A Γ𝛾1 ⊢ 𝛾3 ⪯ 𝛾1

Γ𝛾1 ⊢ A

∀-I
Γ, 𝛾1 :⪰ 𝛾2 ⊢ A

Γ ⊢ ∀𝛾1 :⪰ 𝛾2. A

∀-E
Γ ⊢ ∀𝛾1 :⪰ 𝛾2. A Γ ⊢ 𝛾2 ⪯ 𝛾3

Γ ⊢ A[𝛾1 := 𝛾3]

Figure 5 Curated rules for ⊢ Γ : ctx and Γ ⊢ A.

lift to ⊑, which corresponds to the stability condition in BML-structure. The rest of the
rules introduce ⪯ and ⊑ based on each item of a context as described in Table 1.

⊢ Γ : ctx and Γ ⊢ A : prop states well-formedness of Γ and A, respectively. Most of
derivation rules for these judgments ensure occurrences of classifiers in Γ and A are well
defined, and we omit rules. One exception is WF-◀ in Figure 5, which ensures the context
Γ𝛾 , ◀𝛿 to satisfy Γ𝛾 ⊢ 𝛿 ⊑ 𝛾.

The judgment Γ ⊢ A asserts truth of A under the context Γ. Figure 5 lists derivation rules.
As discussed in Kripke/Fitch-style proof systems, we can understand these derivation rules via
BML-structure. Hyp explicitly requires an intuitionistic transition 𝛾1 ⪯ 𝛾2 to use A at
𝛾1 via persistency. Introduction rules →-I, □-I and ∀-I states that implication, bounded
modality and polymorphic classifier quantifiers corresponds to the structure of A𝛾 , ▶𝛾1:⪰𝛾2

and 𝛾1 ⪰ 𝛾2, respectively. □-E uses the structure of ◀ to get a modal relation from 𝛾2 to
𝛾1. It also requires a condition 𝛾3 ⪯ 𝛾1, which is required by the bound. As examples for
derivations, Figure 6 provides derivations for K−1∗ and T.

Finally, we confirm that truth of propositions are persistent via intuitionistic transitions.

▶ Lemma 3.2 (Persistency). If Γ𝛾1
1 ⊢ A and Γ𝛾1

1 , Γ𝛾2
2 ⊢ 𝛾1 ⪯ 𝛾2, then Γ𝛾1

1 , Γ𝛾2
2 ⊢ A.

4 Kripke Semantics

To define Kripke semantics for BML, we apply the idea of that for intuitionistic first-order
logic [30], regarding BML-structure as its domain. Thus, we define BML-modal as a family
of BML-structures that captures growing domain structure along with ≼.

▶ Definition 4.1 (BML-Model). A BML-model is a triple ⟨𝑊, ≼, {𝑀w}w∈𝑊 ⟩ where

CVIT 2016
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Γ2 = 𝛾1 :⪰ !, (∀𝛾2 :⪰ 𝛾1. □⪰𝛾2 A →□⪰𝛾2 B)𝛾3 Γ3 = ▶𝛾4:⪰𝛾1 , A𝛾5 , ◀𝛾3

Hyp
Γ2, Γ3 ⊢ ∀𝛾2 :⪰ 𝛾1. (□⪰𝛾2 A →□⪰𝛾2 B)

∀-E
Γ2, Γ3 ⊢ □⪰𝛾5 A →□⪰𝛾5 B

Hyp
Γ2, Γ3, ▶𝛾6:⪰𝛾5 ⊢ A

□-I
Γ2, Γ3 ⊢ □⪰𝛾5 A

→-E
Γ2, Γ3 ⊢ □⪰𝛾5 B

□-E
Γ2, ▶𝛾4:⪰𝛾1 , A𝛾5 ⊢ B

→-I
Γ2, ▶𝛾4:⪰𝛾1 ⊢ A → B

□-I
Γ2 ⊢ □⪰𝛾1 (A → B)

→-I
𝛾1 :⪰ ! ⊢ (∀𝛾2 :⪰ 𝛾1. □⪰𝛾2 A →□⪰𝛾2 B) →□⪰𝛾1 (A → B)

∀-I
𝜀 ⊢ ∀𝛾1 :⪰ !. (∀𝛾2 :⪰ 𝛾1. □⪰𝛾2 A →□⪰𝛾2 B) →□⪰𝛾1 (A → B)

Hyp
(□⪰!A)𝛾1 ⊢ □⪰!A

□-E
(□⪰!A)𝛾1 ⊢ A

→-I
𝜀 ⊢ □⪰!A → A

Figure 6 Derivations for K−1∗ and T (omitting derivations w.r.t. ⪯).

⟨𝑊, ≼⟩ is a nonempty preordered set;
Each 𝑀w is a BML-structure ⟨𝐷w, ⪯w, ⊑w, 𝑉w, !w⟩; and
If w1 ≼ w2, then

𝐷w1 ⊆ 𝐷w2 ;
d1 ⪯w1 d2 =⇒ d1 ⪯w2 d2;
d1 ⊑w1 d2 =⇒ d1 ⊑w2 d2;
𝑉w1(p) ⊆ 𝑉w2(p); and,
!w1 = !w2 .

Given a BML-model 𝔐 = ⟨𝑊, ≼, {𝑀w}w∈𝑊 ⟩ and w ∈ 𝑊 , a w-assignment 𝜌 is a
partial map from the set of all classifiers to 𝐷w with ! ↦→ !w. For simplicity, we assume that
an assignment has sufficient domain of definition for interpretation. Given a BML-model
𝔐 = ⟨𝑊, ≼, {𝑀w}w∈𝑊 ⟩, the satisfaction of a formula A at d ∈ 𝐷w with 𝜌 on w ∈ 𝑊 ,
written 𝔐, w, d ⊩𝜌 A, is defined as

𝔐, w, d ⊩𝜌 A ⇐⇒ ∀v ≽ w.
(︀
𝔐, v, d ⊨𝜌 A

)︀
,

where 𝔐, w, d ⊨𝜌 A is defined as follows:

𝔐, w, d ⊨𝜌 p ⇐⇒ d ∈ 𝑉w(p);
𝔐, w, d ⊨𝜌 A → B ⇐⇒ ∀e ⪰w d.

(︀
𝔐, w, e ⊩𝜌 A =⇒ 𝔐, w, e ⊩𝜌 B

)︀
;

𝔐, w, d ⊨𝜌 □⪰𝛾A ⇐⇒ ∀e ⊒w d.
(︀
𝜌(𝛾) ⪯w e =⇒ 𝔐, w, e ⊩𝜌 A

)︀
;

𝔐, w, d ⊨𝜌 ∀𝛾1 :⪰ 𝛾2. A ⇐⇒ ∀e ⪰w 𝜌(𝛾2).
(︀
𝔐, w, d ⊩𝜌·[𝛾1 ↦→e] A

)︀
.

One should be noted that ⊩ and ⊨ are defined mutually recursively.
As BML-model captures growth of BML-structure, it has two intuitionistic relations: ≼

in BML-model and ⪯ in BML-structure. Hence, persistency for BML-model is stated in
more elaborated manner.

▶ Lemma 4.2 (Semantical Persistency). Given a BML-model 𝔐 and suppose w ≼ v and
d ⪯v e. If 𝔐, w, d ⊩𝜌 A, then 𝔐, v, e ⊩𝜌 A.

Comparing this to Lemma 3.2, we can see that ≼ has a correspondence to inclusion between
contexts. Building upon this intuition, we build a canonical model for BML in the next
section.

As we have seen in this section, the birelational Kripke structure for syntactic structure of
programs does not necessarily correspond to Kripke semantics for its logical counterpart.
Rather, its Kripke semantics is captured by growing structure of such syntactic structures.
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5 Soundness and Completeness

We confirm the correspondence between the Kripke semantics and the proof system. In
preparation, we introduce additional definitions for Kripke semantics. Unlike satisfaction of a
formula, the accessibility of each transition relation is independent of d and interpreted as:

𝔐, w ⊩𝜌 𝛾1 ⊴ 𝛾2 ⇐⇒ 𝜌(𝛾1) ⊴ 𝜌(𝛾2). (where ⊴ ∈ {⪯, ⊑})

The interpretation of a context Γ is determined based on pos(Γ) as follows:

𝔐, w ⊩𝜌 𝜀 ⇐⇒ always;
𝔐, w ⊩𝜌 Γ, A𝛾 ⇐⇒ 𝔐, w ⊩𝜌 Γ, 𝔐, w ⊩𝜌 pos(Γ) ⪯ 𝛾, and 𝔐, w, 𝜌(𝛾) ⊩𝜌 A;
𝔐, w ⊩𝜌 Γ, ▶𝛾2:⪰𝛾1 ⇐⇒ 𝔐, w ⊩𝜌 Γ, 𝔐, w ⊩𝜌 pos(Γ) ⊑ 𝛾2, and 𝔐, w ⊩𝜌 𝛾1 ⪯ 𝛾2;
𝔐, w ⊩𝜌 Γ, ◀𝛾 ⇐⇒ 𝔐, w ⊩𝜌 Γ;
𝔐, w ⊩𝜌 Γ, 𝛾2 :⪰ 𝛾1 ⇐⇒ 𝔐, w ⊩𝜌 Γ and 𝔐, w ⊩𝜌 𝛾1 ⪯ 𝛾2.

The semantic consequence is defined accordingly:

Γ ⊩ A ⇐⇒ ∀𝔐, w, 𝜌.
(︀
𝔐, w ⊩𝜌 Γ =⇒ 𝔐, w, 𝜌(pos(Γ)) ⊩𝜌 A

)︀
;

Γ ⊩ 𝛾1 ⊴ 𝛾2 ⇐⇒ ∀𝔐, w, 𝜌.
(︀
𝔐, w ⊩𝜌 Γ =⇒ 𝔐, w ⊩𝜌 𝛾1 ⊴ 𝛾2

)︀
.
(where ⊴ ∈ {⪯, ⊑})

Now we can state soundness:

▶ Theorem 5.1 (Kripke Soundness).
1. If Γ ⊢ A, then Γ ⊩ A.
2. If Γ ⊢ 𝛾1 ⪯ 𝛾2, then Γ ⊩ 𝛾1 ⪯ 𝛾2.
3. If Γ ⊢ 𝛾1 ⊑ 𝛾2, then Γ ⊩ 𝛾1 ⊑ 𝛾2.

To prove completeness we use a canonical-model construction:

▶ Definition 5.2 (Canonical Model). 𝔐c = ⟨𝑊 c, ≼c, {𝑀 c
Γ}Γ∈𝑊 c⟩ is defined as follows:

𝑊 c is the set of all well-formed contexts;
Γ ≼c Δ ⇐⇒ ∃Γ′. (Δ = Γ, Γ′);
𝑀 c

Γ = ⟨𝐷c
Γ, ⪯c

Γ, ⊑c
Γ, 𝑉 c

Γ , !c
Γ⟩ where

𝐷c
Γ = DomC(Γ) with !c

Γ = !;
𝛾1 ⪯c

Γ 𝛾2 ⇐⇒ Γ ⊢ 𝛾1 ⪯ 𝛾2;
𝛾1 ⊑c

Γ 𝛾2 ⇐⇒ Γ ⊢ 𝛾1 ⊑ 𝛾2;
𝛾 ∈ 𝑉 c

Γ(p) ⇐⇒ Γ, ◀! ⊢ □⪰𝛾p.

▶ Lemma 5.3. 𝔐c is a BML-model.

This canonical model clarifies how the layered structure of BML-model corresponds
to the structure of contexts in our proof system: each 𝑀 c

Γ models the structure formed
by classifiers, whereas 𝔐c models the structure formed by contexts. The relation ⪯c

Γ in a
BML-structure of the canonical model corresponds to the judgment Γ ⊢ 𝛾1 ⪯ 𝛾2 while the
relation ≼ corresponds to an order between contexts.

On stating truth lemma, it should be noted that there is a subtle difference between
Kripke semantics and proof system. In semantics, the truth of a formula is always defined
at each point of a model, whereas in syntax, only its validity at pos(Γ) is assertible under
Γ; in this respect, BML differs from ordinary labelled proof systems (cf. e.g., [25, 30]).
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Types A, B ::= p | A → B | □⪰𝛾A | ∀𝛾1 :⪰ 𝛾2. A
Contexts Γ, Δ ::= 𝜀 | Γ, x :𝛾 A | Γ, ▶𝛾1:⪰𝛾2 | Γ, ◀𝛾 | Γ, 𝛾1 :⪰ 𝛾2

Terms M , N ::= x | 𝜆x :𝛾 A. M | M1M2 | quo{𝛾1:⪰𝛾2 M} | unq{𝛾M} | 𝜆𝛾1 :⪰ 𝛾2. M | M𝛾

Var
x :𝛾1 A ∈ Γ𝛾2 Γ𝛾2 ⊢ 𝛾1 ⪯ 𝛾2

Γ𝛾2 ⊢ x : A

→-I
Γ, x :𝛾 A1 ⊢ M1 : A2 𝛾1 /∈ FC(A2)

Γ ⊢ 𝜆x :𝛾 A1. M1 : A1 → A2

→-E
Γ ⊢ M1 : A1 → A2 Γ ⊢ M2 : A1

Γ ⊢ M1M2 : A2

□-I
Γ, ▶𝛾1:⪰𝛾2 ⊢ M : A 𝛾1 /∈ FC(A)

Γ ⊢ quo{𝛾1:⪰𝛾2 M} : □⪰𝛾2 A

□-E
Γ𝛾1 , ◀𝛾2 ⊢ M : □⪰𝛾3 A Γ𝛾1 ⊢ 𝛾3 ⪯ 𝛾1

Γ𝛾1 ⊢ unq{𝛾2 M} : A

∀-I
Γ, 𝛾1 :⪰ 𝛾2 ⊢ M : A

Γ ⊢ 𝜆𝛾1 :⪰ 𝛾2. M : ∀𝛾1 :⪰ 𝛾2. A

∀-E
Γ ⊢ M : ∀𝛾1 :⪰ 𝛾2. A Γ ⊢ 𝛾2 ⪯ 𝛾3

Γ ⊢ M𝛾3 : A[𝛾1 := 𝛾3]

Figure 7 Definitions and typing judgments for our lambda-calculus. We also have rules for
⊢ Γ : ctx, Γ ⊢ A : type, Γ ⊢ 𝛾1 ⪯ 𝛾2 and Γ ⊢ 𝛾1 ⊑ 𝛾2. We omit them as they are almost identical to
those in the natural-deduction system.

The restriction, however, does not pose a problem for establishing their correspondence,
because Γ, ◀! ⊩ □⪰𝛾A can be used instead to represent the validity of A at 𝛾 under Γ.
Here, the bounded modality expresses monotonicity, analogous to the S4 modality in the
Gödel–McKinsey–Tarski translation.

The canonical Γ-assignment 𝜌c
Γ is an assignment that maps each 𝛾 ∈ DomC(Γ) to itself,

and we write Γ, 𝛾 ⊩c A if 𝔐c, Γ, 𝛾 ⊩𝜌c
Γ A. The truth lemma is states in the following form:

▶ Lemma 5.4 (Truth Lemma). Γ, 𝛾 ⊩c A ⇐⇒ Γ, ◀! ⊢ □⪰𝛾A.

Finally, we show Kripke completeness:

▶ Theorem 5.5 (Kripke Completeness).
1. If Γ ⊩ A, then Γ ⊢ A.
2. If Γ ⊩ 𝛾1 ⪯ 𝛾2, then Γ ⊢ 𝛾1 ⪯ 𝛾2.
3. If Γ ⊩ 𝛾1 ⊑ 𝛾2, then Γ ⊢ 𝛾1 ⊑ 𝛾2.

6 Lambda-Calculus and Metatheory

Under the Curry–Howard isomorphism [9, 31], we can consider a typed lambda-calculus that
corresponds to our natural-deduction system. One can find the relevant definitions and typing
rules in Figure 7. In the resulting calculus, one can observe that terms for →-I, □-I, □-E,
∀-I correspond to items in context; thus, context structure and its BML-structure capture
the syntactic structure of lambda-terms. Particularly, terms for □-I and □-E appear as
quasi-quotation constructs, which is commonly observed in modal lambda-calculi [5–7, 18]. As
an example, Figure 8 shows how our calculus represents the example in Figure 1c, and its
corresponding BML-structure, which demonstrates that BML allows typing programs that
were not typed under the traditional modal language.

In this section, we study the metatheory of the calculus including subject reduction and
strong normalization. These results ensure that proof normalization is well behaved and that
every well-typed term admits a normal form, providing a computational justification for our
proof-theoretic development.
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(*):γ0 int→int→int, 10:γ1 int ⊢
let sqr:γ2 int→int = λx:γ3 int. x * x in
let code:γ4 □⪰ γ2 int = quo{γ5:⪰γ2 sqr 10 } in
unq{γ4 code }
: int

1

! 𝛾0 𝛾1

𝛾3x

𝛾2

𝛾5

* 10 sqr
𝛾4

code

2

Figure 8 The example in Figure 1c written in our calculus, and its corresponding BML-structure.
As we lack constants, we introduce * and 10 as variables. let-expression is a shorthand for
𝜆-abstraction and application.

6.1 Logical Harmony and Reduction Semantics
In preparation for discussion on proof reduction, we introduce two meta operations and confirm
their properties. Classifier substitution (−)[𝛾1 := 𝛾2] operates on classifiers, contexts, types and
terms, substituting free occurrences of 𝛾1 with 𝛾2. Variable substitution (−)[𝛾1 := 𝛾2, x := M ]
operates on terms, substituting free occurrences of 𝛾1 and x with 𝛾2 and M , respectively.
Then, we can confirm that the following lemmas hold.

▶ Lemma 6.1 (Variable Substitution). If Γ𝛾1
1 , x :𝛾2 A, Γ2 ⊢ M1 : B and Γ1 ⊢ M2 : A, then

Γ1, Γ2[𝛾2 := 𝛾1] ⊢ M1[𝛾2 := 𝛾1, x := M2] : B[𝛾2 := 𝛾1].

▶ Lemma 6.2 (Rebasing). If Γ𝛾1
1 , ◀𝛾2 , ▶𝛾3:⪰𝛾4 , Γ2 ⊢ M1 : A and Γ1 ⊢ 𝛾4 ⪯ 𝛾1, then

Γ1, Γ2[𝛾3 := 𝛾1] ⊢ M [𝛾3 := 𝛾1] : A[𝛾3 := 𝛾1]

▶ Lemma 6.3 (Classifier Substitution). If Γ1, 𝛾1 :⪰ 𝛾2, Γ2 ⊢ M : A and Γ1 ⊢ 𝛾2 ⪯ 𝛾3, then
Γ1, Γ2[𝛾1 := 𝛾3] ⊢ M [𝛾1 := 𝛾3] : A[𝛾1 := 𝛾3].

The variable substitution and classifier substitution lemmas are standard in typed lambda-
calculi. In particular, these substitutions are based on the standard notion of substitution for
well-typed terms and are extended to classifiers in a natural way. On the other hand, the
rebasing lemma is specific to our calculus, which states that ▶ cancels ◀, which globally
changes the corresponding BML-structure.

Thereafter, we can confirm that the introduction and elimination rules in BML are well
balanced with respect to local soundness and local completeness [27]. For the sake of space,
we skim local soundness/completeness patterns in the following statements.

▶ Lemma 6.4 (Local Soundness Patterns).
1. Γ𝛾1 ⊢ (𝜆x :𝛾2 A. M )N : B =⇒ Γ ⊢ M [𝛾2 := 𝛾1, x := N ] : B.
2. Γ𝛾1 ⊢ unq{𝛾2quo{𝛾3:⪰𝛾4M}} : A =⇒ Γ ⊢ M [𝛾3 := 𝛾1] : A.
3. Γ ⊢ (𝜆𝛾1 :⪰ 𝛾2. M )𝛾3 : A =⇒ Γ ⊢ M [𝛾1 := 𝛾3] : A.

▶ Lemma 6.5 (Local Completeness Patterns). (𝛿 is taken freshly)
1. Γ ⊢ M : A → B =⇒ Γ ⊢ 𝜆x :𝛿 A. (Mx) : A → B.
2. Γ𝛾1 ⊢ M : □⪰𝛾2A =⇒ Γ ⊢ quo{𝛿:⪰𝛾2unq{𝛾1M}} : □⪰𝛾2A.
3. Γ ⊢ M : ∀𝛾1 :⪰ 𝛾2. A =⇒ Γ ⊢ 𝜆𝛿 :⪰ 𝛾2. (M𝛿) : ∀𝛾1 :⪰ 𝛾2. A.

Local soundness and completeness patterns can be regarded as 𝛽-reduction and 𝜂-expansion,
respectively. We define 𝛽-reduction on raw terms, notated M1 ⇒𝛾

𝛽 M2. Unlike standard
definitions of 𝛽-reduction, that in our calculus is a family of relations indexed by classifiers.
This classifier stands for the position where the reduction takes place.
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▶ Definition 6.6 (𝛽-Reduction). M1 ⇒𝛾
𝛽 M2 is defined to satisfy following rules (along with

compatibility rules).

(𝜆x :𝛾2 A. M )N ⇒𝛾1
𝛽 M [𝛾2 := 𝛾1, x := N ]

unq{𝛾2quo{𝛾3:⪰𝛾4M}} ⇒𝛾1
𝛽 M [𝛾3 := 𝛾1]

(𝜆𝛾2 :⪰ 𝛾3. M )𝛾4 ⇒𝛾1
𝛽 M [𝛾2 := 𝛾4]

We write ⇒𝛾
𝛽* for the reflexive and transitive closure of ⇒𝛾

𝛽.
Note that the compatibility rules need to maintain positions for terms that move positions.

We can confirm that 𝛽-reduction preserves typeability.
▶ Theorem 6.7 (Subject Reduction). If Γ𝛾 ⊢ M1 : A and M1 ⇒𝛾

𝛽 M2, then Γ ⊢ M2 : A.

6.2 Metatheory
𝛽-reduction behaves well in the following sense:
▶ Theorem 6.8 (Strong Normalization). If Γ𝛾 ⊢ M : A, then M is strongly normalizing with
respect to ⇒𝛾

𝛽.
▶ Theorem 6.9 (Confluence). If Γ𝛾 ⊢ M1 : A, M1 ⇒𝛾

𝛽* M2 and M1 ⇒𝛾
𝛽* M3, then there

exists M4 such that M2 ⇒𝛾
𝛽* M4 and M3 ⇒𝛾

𝛽* M4.
▶ Corollary 6.10 (Uniqueness of 𝛽-Normal Form). If Γ𝛾 ⊢ M1 : A, then M1 has a unique
normal form with respect to ⇒𝛾

𝛽.
In order to confirm strong normalization, it suffices to reduce it to strong normalization of

simply typed lambda-calculus, which is a common technique in modal lambda-calculi [6, 18].
Instead, we proved it directly by using the method of reducibility, which can be found in
Appendix. Finally, we confirm canonicity and the subformula property.
▶ Definition 6.11.
1. A term is said to be canonical if its outermost term-former is for an introduction rule, and

is said to be neutral otherwise.
2. A subformula of a formula is a literal subexpression with some classifier maybe renamed.
▶ Theorem 6.12 (Canonicity). If a term is well-typed, closed regarding term variable, and
𝛽-normal, then it is canonical.
▶ Theorem 6.13 (Subformula Property). Suppose Γ𝛾 ⊢ M : A. If M is normal with respect to
⇒𝛾

𝛽, then any subterm of M satisfies at least one of the following:
1. Its type is a subformula of A;
2. Its type is a subformula of B for some x :𝛿 B ∈ Γ.

7 BML as a Generalization of S4

We designed BML as a generalization of S4, and we formally confirm this fact in this section.
We interpret the S4 modal operator □ as a bounded modal operator □⪰!, with respect to
empty resource. For formal comparison, we consider a restricted language of BML and a
language of S4:

ℒ! ∋ A, B ::= p | A → B | □⪰!A; ℒ□ ∋ 𝐴, 𝐵 ::= p | 𝐴 → 𝐵 | □𝐴.

And we define |−| : ℒ! → ℒ□ and (−)⪰! : ℒ□ → ℒ! as translations that swap □⪰! and □. In
this section, we dig into the correspondence between BML and S4 via these translations,
both from semantical and proof-theoretic perspectives.
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7.1 Semantical Comparison
Alechina et al. [2] introduced a birelational model for CS4, a constructive variant of S4:

▶ Definition 7.1 (CS4-Model [2]). A CS4-model3 is a quadruple ⟨𝑊, ⪯, 𝑅, 𝑉 ⟩, where
⟨𝑊, ⪯⟩ is a nonempty preordered set,
𝑅 is a preorder on 𝑊 with condition:

Left-persistency: (𝑅 ; ⪯) ⊆ (⪯ ; 𝑅), and
𝑉 assigns each atom 𝑝 to an upward-closed subset of 𝑊 .

Then we define satisfaction of a modal operator 𝑀, w ⊨CS4 □𝐴 as ∀𝑣. 𝑤 ⪯ 𝑣 ⇒ ∀𝑢. 𝑣 𝑅 𝑢 ⇒
𝑀, u ⊨CS4 𝐴. From semantical perspective, we argue that there is a mutual translation
between BML models and CS4 models. From CS4 models to BML models, we take steps
as described below, which we call one-point-model construction:

▶ Lemma 7.2 (Stabilization). Given a CS4-model 𝑀 = ⟨𝑊, ⪯, 𝑅, 𝑉 ⟩. Define ⊑ as (⪯ ; 𝑅).
Then 𝑀* = ⟨𝑊, ⪯, ⊑, 𝑉 ⟩ is a stable CS4-model.

▶ Lemma 7.3 (Root-Extension). Given a stable CS4-model 𝑀 = ⟨𝑊, ⪯, ⊑, 𝑉 ⟩. Define
𝑀! = ⟨𝑊!, ⪯!, ⊑!, 𝑉!⟩ as follows:

𝑊! = 𝑊 ⨿ {!};
w ⪯! v ⇐⇒ w = ! or w ⪯ v;
w ⊑! v ⇐⇒ w = ! or w ⊑ v;
w ∈ 𝑉!(p) ⇐⇒ 𝑉 (p) = 𝑊 if w = !, and w ∈ 𝑉 (p) otherwise.

Then 𝑀! is a stable CS4-model with a root !, namely, a BML-structure.

▶ Lemma 7.4 (One-Point Model). Given a BML-structure 𝑀 . Define 𝑀* as

⟨{*}, {⟨*, *⟩}, {* ↦→ 𝑀}⟩.

Then 𝑀* is a BML-model.

By combining these steps, we can construct a BML-model from a CS4-model. We can
confirm that such a BML-model behaves equivalently to the original CS4-model:

▶ Theorem 7.5. Given a CS4-model 𝑀 = ⟨𝑊, ⪯, 𝑅, 𝑉 ⟩. Define 𝔐 as (𝑀*)!* and a
*-assignment ! for 𝔐 as ! ↦→ !. Then 𝔐 is a BML-model, and for any 𝐴 ∈ ℒ□, the following
are equivalent:

𝑀, w ⊨CS4 𝐴;
𝔐, *, w ⊩! (𝐴)⪰!.

Conversely, we construct a CS4-model from a BML-model via flattening.

▶ Definition 7.6 (Flattening). Let 𝔐 = ⟨𝑊, ≼, {𝑀w}w∈𝑊 ⟩ be a BML-model, with each
𝑀w as ⟨𝐷w, ⪯w, ⊑w, 𝑉w, !w⟩. Then a CS4-model 𝔐+ = ⟨𝑊+, ⪯+, 𝑅+, 𝑉+⟩ is defined as
follows:

𝑊+ =
∑︀

w ∈ 𝑊 𝐷w;
⟨w, d⟩ ⪯+ ⟨w′, d ′⟩ ⇐⇒ w ≼ w′ and d ⪯w′ d ′;
⟨w, d⟩ 𝑅+ ⟨w′, d ′⟩ ⇐⇒ w = w′ and d ⊑w′ d ′;
⟨w, d⟩ ∈ 𝑉+(p) ⇐⇒ d ∈ 𝑉w(p).

3 For simplicity, we omit fallible worlds from the definition because ⊥ is not considered in this paper, but
our model can be extended to having them as well.
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▶ Lemma 7.7. 𝔐+ is a CS4-model.

▶ Theorem 7.8. Given a BML-model 𝔐. For any A ∈ ℒ!, the following are equivalent:
𝔐, w, d ⊩𝜌 A;
𝔐+, ⟨w, d⟩ ⊨CS4 |A|.

These theorems indicate that the two constructions, namely (𝑀*)!* and 𝔐+, are pseudo-
inverse operations that preserve satisfaction, leading to the following characterization:

▶ Theorem 7.9. The ℒ□-fragment of CS4 is isomorphic to the ℒ!-fragment of BML up to
logical equivalence.

7.2 Proof-Theoretic Comparison
As discussed in Section 3, our proof system can be regarded as an extension of Kripke/Fitch-
style modal proof systems [5, 7, 18]. Leveraging this correspondence, we can translate proofs in
their proof systems to ours. Particularly, we prove that we can translate proofs in Kripke-style
proof system for S4 [7] into proofs in our proof system. We get the following result:

▶ Theorem 7.10. If 𝜀 ⊢S4 𝐴, then 𝜀 ⊢ (𝐴)⪰!.

According to Theorem 7.9, the converse direction is also expected to hold.

8 Related Work

The key charasteristics of BML can be summarized in two aspects. First, BML introduces a
first-order language with classifiers to reason about the persistent nature of intuitionistic
relations. Second, it integrates modal and first-order languages via bounded modality, which
explicitly captures interactions between modal and intuitionistic transitions.

For the first aspect, closely related ideas can be found in labelled proof systems for
intuitionistic logic [4,8,17], where labels are used to represent worlds and enable proof-theoretic
reasoning guided by Kripke semantics. While this line of work has been extensively studied
from a logical perspective, its computational interpretation has received relatively little
attention. To the best of our knowledge, the proposal by Reed and Pfenning [28] is one of
the few works that develop a labelled proof system for intuitionistic logic together with a
corresponding lambda-calculus. Their work provides a logical foundation for control operators
based on intuitionistic logic. In their system, labels represent binding positions and are
used to detect illegal uses of continuations. This use of labels is conceptually close to our
interpretation of classifiers as variable scopes, although the technical setting and intended
applications are different.

Related ideas also appear in programming language theory, where variable scopes or
resource availability are made explicit at the type level. A notable example is region-based
memory management [10,36] and lifetime-based systems [11], which are used for the static
management of regions in which objects are alive. Some of these systems formalize inclusion
relations between regions or lifetimes, which is similar to our formulation of classifiers. Another
closely related line of work is refined environment classifiers [13, 15, 26], which annotate scope
information on code types to ensure safe code generation in the presence of computational
effects. This line of work inspired our development of BML as a logical reconstruction of
their approach. However, there is no direct correspondence between their type systems and
our calculus, nor is such a correspondence our goal; for example, their calculi do not support
programs like Figure 8.
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For the second aspect, several proposals have explored type systems that represent
resource isolation in a more flexible manner. A prominent example is Contextual Modal Logic
(CML) [22, 24], which extends the modal operator of CS4 with explicit contexts. In CML,
the contextual modality [Γ ⊢ 𝐴] expresses that 𝐴 is valid under the assumptions Γ. From
this perspective, contexts can be understood as a way of representing persistent resources,
which bears some similarity to bounded modality. However, the technical setting and design
goals of CML are quite different from ours. In particular, CML does not explicitly model
interactions between intuitionistic and modal transitions, and contextual modality does not
provide a notion of persistency across modal boundaries. As a result, CML does not directly
account for programs that involve subtle forms of resource control. For example, it does not
type programs like Figure 1c, reflecting a difference in design goals rather than a limitation of
the system.

9 Conclusion and Future Work

In this paper, we explore an experimental extension of constructive modal logic motivated by
a birelational Kripke-structural view of syntactic resource control in programming languages.
We introduced BML as a modal logic that captures the interaction between intuitionistic and
modal transitions in birelational Kripke structures. We formalized BML by presenting a
natural-deduction proof system and a Kripke semantics, and established their correspondence.
We further provided a computational interpretation of BML via a corresponding modal
lambda-calculus and studied its fundamental metatheoretic properties. Finally, we clarified
that BML can be viewed as a generalization of S4. Taken together, these results demonstrate
that BML is a well-disciplined logic. They support the idea that birelational Kripke structures
provide a viable basis for exploring fine-grained resource control in programming languages.

From a logical perspective, BML integrates a modal language and a first-order language,
connected by bounded modality, which serves as an explicit interface between modal and
intuitionistic transitions. This duality is reflected uniformly in both the proof system and
the Kripke semantics. From a computational perspective, BML provides a language for
describing interactions between variable scopes and resource isolation. This suggests that
BML may offer typing disciplines for programs that fall outside the scope of traditional
modal lambda-calculi. In this paper, however, we focused on establishing the theoretical
foundations of BML and its computational counterpart.

Whether BML can serve as a foundation for practical programming applications, however,
remains an open question. As discussed in Section 1, our primary motivation lies in
applications to multi-stage programming. In this setting, properties such as time-ordered
normalization [6, 39] are widely regarded as desirable. Addressing this question will require a
more detailed analysis of the operational behavior of the corresponding modal lambda-calculus.

Beyond practical applications, an interesting direction for future work is to explore
bounded extensions of modal logics other than S4. For logics such as K, K4, and T, bounded
variants can be obtained by relatively minor modifications of our proof system, in particular
by adjusting the rules for the modal relation ⊑. In contrast, for modal logics such as
S5 [23] and GL [12], a straightforward adaptation appears insufficient, and more substantial
proof-theoretic extensions may be required. We leave this investigation to future work.
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⊢ Γ : ctx

WF-Emp

⊢ 𝜀 : ctx

WF-Hyp

⊢ Γ : ctx Γ ⊢ A : prop 𝛾 /∈ DomC(Γ)

⊢ Γ, A𝛾 : ctx

WF-▶

⊢ Γ : ctx 𝛾1 /∈ DomC(Γ) 𝛾2 ∈ DomC(Γ)

⊢ Γ, ▶𝛾1:⪰𝛾2 : ctx

WF-◀

⊢ Γ𝛾 : ctx Γ𝛾 ⊢ 𝛿 ⊑ 𝛾

⊢ Γ𝛾 , ◀𝛿 : ctx

WF-cls

⊢ Γ : ctx 𝛾1 /∈ DomC(Γ) 𝛾2 ∈ DomC(Γ)

⊢ Γ, 𝛾1 :⪰ 𝛾2 : ctx

Γ ⊢ A : prop

WF-atom

⊢ Γ : ctx
Γ ⊢ p : prop

WF-→
Γ ⊢ A : prop Γ ⊢ B : prop

Γ ⊢ A → B : prop

WF-□
Γ ⊢ A : prop 𝛾 ∈ DomC(Γ)

Γ ⊢ □⪰𝛾A : prop

WF-∀
Γ, 𝛾1 :⪰ 𝛾2 ⊢ A : prop

Γ ⊢ ∀𝛾1 :⪰ 𝛾2. A : prop

Figure 9 Derivation Rules for Well-Formedness Judgments

A Full Definitions for Section 3

▶ Definition A.1. FC(A) represents a set of free classifiers in A.

FC(p) = ∅
FC(A → B) = FC(A) ∪ FC(B)
FC(□⪰𝛾A) = FC(A) ∪ {𝛾}

FC(∀𝛾1 :⪰ 𝛾2. A) = (FC(A) − {𝛾1}) ∪ {𝛾2}

▶ Definition A.2. DomC(Γ) represents a set of classifiers and variables declared in Γ.

DomC(𝜀) = {!}
DomC(Γ, A𝛾) = DomC(Γ) ∪ {𝛾}

DomC(Γ, ▶𝛾1:⪰𝛾2) = DomC(Γ) ∪ {𝛾1}
DomC(Γ, ◀𝛾) = DomC(Γ)

DomC(Γ, 𝛾1 :⪰ 𝛾2) = DomC(Γ) ∪ {𝛾1}

▶ Definition A.3. A well-formed context judgment ⊢ Γ : ctx and well-formed type judgment
Γ ⊢ A : prop are derived by rules listed in Figure 9

▶ Definition A.4. A classifier substitution (−)[𝛾1 := 𝛾2] is a meta operation on classifiers and
types, which replaces free occurrences of 𝛾1 with 𝛾2.
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𝛾1[𝛾2 := 𝛾3] =
{︃

𝛾3 if 𝛾1 = 𝛾2

𝛾1 otherwise

p[𝛾1 := 𝛾2] = p
(A → B)[𝛾1 := 𝛾2] = A[𝛾1 := 𝛾2] → B[𝛾1 := 𝛾2]
□⪰𝛾1A[𝛾2 := 𝛾3] = □⪰𝛾1[𝛾2:=𝛾3]A[𝛾2 := 𝛾3]

(∀𝛾1 :⪰ 𝛾2. A)[𝛾3 := 𝛾4] = ∀𝛾1 :⪰ 𝛾2[𝛾3 := 𝛾4]. A[𝛾3 := 𝛾4]
where 𝛾1 /∈ {𝛾3, 𝛾4}

𝜀[𝛾1 := 𝛾2] = 𝜀

(A𝛾1 , Γ)[𝛾2 := 𝛾3] = A[𝛾2 := 𝛾3]𝛾1 , Γ[𝛾2 := 𝛾3]
where 𝛾1 /∈ {𝛾2, 𝛾3}

(▶𝛾1:⪰𝛾2 , Γ)[𝛾3 := 𝛾4] = ▶𝛾1:⪰𝛾2[𝛾3:=𝛾4], Γ[𝛾3 := 𝛾4]
where 𝛾1 /∈ {𝛾3, 𝛾4}

(◀𝛾1 , Γ)[𝛾2 := 𝛾3] = ◀𝛾1[𝛾2:=𝛾3], Γ[𝛾2 := 𝛾3]
(𝛾1 :⪰ 𝛾2, Γ)[𝛾3 := 𝛾4] = 𝛾1 :⪰ 𝛾2[𝛾3 := 𝛾4], Γ[𝛾3 := 𝛾4]

where 𝛾1 /∈ {𝛾3, 𝛾4}

B Proofs for Section 4

▶ Lemma 4.2 (Semantical Persistency (On page 8)). Given a BML-model 𝔐 and suppose
w ≼ v and d ⪯v e. If 𝔐, w, d ⊩𝜌 A, then 𝔐, v, e ⊩𝜌 A.

Proof. It suffices to check that for all 𝑑′ ⪰𝑤 𝑑, if 𝑤, 𝑑 ⊨𝜌 𝐴, then 𝑤, 𝑑′ ⊨𝜌 𝐴. We proceed by
induction on 𝐴.

▷ Case (𝐴 ≡ 𝑝). Follows from that 𝑉𝑤(𝑝) is upward-closed.

▷ Case (𝐴 ≡ 𝐵 → 𝐶). By definition.

▷ Case (𝐴 ≡ □⪰𝛾𝐵). Suppose 𝑤, 𝑑 ⊨𝜌 □⪰𝛾𝐵 and 𝑑 ⪯𝑤 𝑑′. Take 𝑒 ⊒𝑤 𝑑′ such that
𝑒 ⪰𝑤 𝜌(𝛾). By left-stability we have 𝑑 ⊑𝑤 𝑒, so that 𝑤, 𝑒 ⊩𝜌 𝐵 since 𝑤, 𝑑 ⊨𝜌 □⪰𝛾𝐵, which
implies 𝑤, 𝑒 ⊨𝜌 □⪰𝛾𝐵.

▷ Case (𝐴 ≡ ∀𝛾2 :⪰ 𝛾1. 𝐵). Immediate from the IH. ◀

C Proofs for Section 5

▶ Lemma C.1. Suppose 𝑤 ≼ 𝑣 and 𝑑 ⪯𝑣 𝑒.
1. If 𝑤 ⊩𝜌 𝛾1 ⪯ 𝛾2, then 𝑣 ⊩𝜌 𝛾1 ⪯ 𝛾2.
2. If 𝑤 ⊩𝜌 𝛾1 ⊑ 𝛾2, then 𝑣 ⊩𝜌 𝛾1 ⊑ 𝛾2.

Proof. Straightforward. ◀

▶ Corollary C.2. If 𝑤 ≼ 𝑣 and 𝑤 ⊩𝜌 Γ, then 𝑣 ⊩𝜌 Γ.
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▶ Lemma C.3 (Substitution). 𝑤, 𝑑 ⊩𝜌·[𝛾2 ↦→𝜌(𝛾1)] 𝐴 ⇐⇒ 𝑤, 𝑑 ⊩𝜌 𝐴[𝛾2 := 𝛾1].

Proof. By induction on 𝐴. ◀

▶ Theorem 5.1 (Kripke Soundness (On page 9)).
1. If Γ ⊢ A, then Γ ⊩ A.
2. If Γ ⊢ 𝛾1 ⪯ 𝛾2, then Γ ⊩ 𝛾1 ⪯ 𝛾2.
3. If Γ ⊢ 𝛾1 ⊑ 𝛾2, then Γ ⊩ 𝛾1 ⊑ 𝛾2.

Proof. (2) and (3) are mostly straightforward, so we show (1) here. We proceed by induction
on derivation.

Suppose Γ ⊢ 𝐴. Assuming 𝑤 ⊩𝜌 Γ, we show 𝑤, pos(Γ) ⊩𝜌 𝐴. We analyze the last rule of
the derivation:

▷ Case (Var). Assume

𝑥 :𝛾 𝐴 ∈ Γ Γ ⊢ 𝛾 ⪯ pos(Γ)

Γ ⊢ 𝐴

By assumption we have 𝑤, 𝜌(𝛾) ⊩𝜌 𝐴, and from (2), 𝜌(𝛾) ⪯𝑤 𝜌(pos(Γ)) holds. By Lemma 4.2
we see 𝑤, 𝜌(pos(Γ)) ⊩𝜌 𝐴.

▷ Case (→-I). Assume

Γ, 𝑥 :𝛾 𝐵 ⊢ 𝐶 𝛾 /∈ FC(𝐶)

Γ ⊢ 𝐵 → 𝐶

Take 𝑣 ≽ 𝑤 and 𝑑 ⪰𝑣 𝜌(pos(Γ)), and suppose 𝑣, 𝑑 ⊩𝜌 𝐵. By Corollary C.2 we have 𝑣 ⊩𝜌 Γ,
so letting 𝜌′ = 𝜌 · [𝛾 ↦→ 𝑑] we obtain 𝑣 ⊩𝜌′ Γ, 𝑥 :𝛾 𝐵. By the IH, 𝑣, 𝑑 ⊩𝜌′

𝐶 holds, and so does
𝑣, 𝑑 ⊩𝜌 𝐶 as 𝛾 /∈ FC(𝐶), which implies 𝑤, 𝜌(pos(Γ)) ⊩𝜌 𝐵 → 𝐶.

▷ Case (→-E). Assume

Γ ⊢ 𝐵 → 𝐶 Γ ⊢ 𝐵

Γ ⊢ 𝐶

By the IH, we have 𝑤, 𝜌(pos(Γ)) ⊩𝜌 𝐵 → 𝐶 and 𝑤, 𝜌(pos(Γ)) ⊩𝜌 𝐵. Since 𝑤 ≼ 𝑤 and
𝜌(pos(Γ)) ⪯𝑤 𝜌(pos(Γ)), we obtain 𝑤, 𝜌(pos(Γ)) ⊩𝜌 𝐶.

▷ Case (□-I). Assume

Γ, ▶𝛾2:⪰𝛾1 ⊢ 𝐵 𝛾2 /∈ FC(𝐵)

Γ ⊢ □⪰𝛾1𝐵

Take 𝑣 ≽ 𝑤 and 𝑑 ⊒𝑣 𝜌(pos(Γ)). By Corollary C.2 we have 𝑣 ⊩𝜌 Γ, so letting 𝜌′ = 𝜌 · [𝛾2 ↦→ 𝑑]
we obtain 𝑣 ⊩𝜌′ Γ, ▶𝛾2:⪰𝛾1 . By the IH, 𝑣, 𝑑 ⊩𝜌′

𝐵 holds, and so does 𝑣, 𝑑 ⊩𝜌 𝐵 as
𝛾2 /∈ FC(𝐵), which implies 𝑤, 𝜌(pos(Γ)) ⊩𝜌 □⪰𝛾1𝐵.

▷ Case (□-E). Assume

Γ, ◀𝛾 ⊢ □⪰𝛾1𝐵 Γ ⊢ 𝛾1 ⪯ pos(Γ)

Γ ⊢ 𝐵

From 𝑤 ⊩𝜌 Γ, we have 𝑤 ⊩𝜌 Γ, ◀𝛾 , and by (2), also 𝜌(𝛾1) ⪯𝑤 𝜌(pos(Γ)). Since Γ, ◀𝛾 is
well-formed, there should be a subderivation of Γ ⊢ 𝛾 ⊑ pos(Γ), which gives 𝜌(𝛾) ⊑𝑤 𝜌(pos(Γ))
by (3). Applying the IH to Γ, ◀𝛾 ⊢ □⪰𝛾1𝐵, we have 𝑤, 𝜌(𝛾) ⊩𝜌 □⪰𝛾1𝐵, and from 𝑤 ≼ 𝑤, we
see 𝑤, 𝜌(pos(Γ)) ⊩𝜌 𝐵.

CVIT 2016



23:22 Bounded Modal Logic

▷ Case (∀-I). Assume

Γ, 𝛾2 :⪰ 𝛾1 ⊢ 𝐵

Γ ⊢ ∀𝛾2 :⪰ 𝛾1. 𝐵

Take 𝑣 ≽ 𝑤 and 𝑑 ⪰𝑣 𝜌(𝛾1). By Corollary C.2 we have 𝑣 ⊩𝜌 Γ, so letting 𝜌′ = 𝜌 · [𝛾2 ↦→ 𝑑] we
obtain 𝑣 ⊩𝜌′ Γ, 𝛾2 :⪰ 𝛾1. By the IH, 𝑣, 𝜌(pos(Γ)) ⊩𝜌′

𝐵 holds, which implies 𝑤, 𝜌(pos(Γ)) ⊩𝜌

∀𝛾2 :⪰ 𝛾1. 𝐵.

▷ Case (∀-E). Assume

Γ ⊢ ∀𝛾2 :⪰ 𝛾1. 𝐵 Γ ⊢ 𝛾1 ⪯ 𝛾

Γ ⊢ 𝐵[𝛾2 := 𝛾]

By the IH, we have 𝑤, 𝜌(pos(Γ)) ⊩𝜌 ∀𝛾2 :⪰ 𝛾1. 𝐵, and from (2), 𝜌(𝛾1) ⪯𝑤 𝜌(𝛾) holds. Since
𝑤 ≼ 𝑤, we obtain 𝑤, 𝜌(pos(Γ)) ⊩𝜌·[𝛾2 ↦→𝜌(𝛾)] 𝐵, and Lemma C.3 yields 𝑤, 𝜌(pos(Γ)) ⊩𝜌

𝐵[𝛾2 := 𝛾]. ◀

▶ Lemma C.4. The following rules are admissible:
1. Inversion of □-I:

Γ ⊢ □⪰𝛾𝐴

Γ, ▶𝛾′:⪰𝛾 ⊢ 𝐴

2. General weakening for top-level subderivations:

Γ, ◀! , Γ′ ⊢ 𝐴

Γ, Δ, ◀! , Γ′ ⊢ 𝐴

Γ, ◀! , Γ′ ⊢ 𝛾1 ⊴ 𝛾2

Γ, Δ, ◀! , Γ′ ⊢ 𝛾1 ⊴ 𝛾2

where ⊴ ∈ {⪯, ⊑}.

Proof.
1. Using Lemma 3.2, we have

Γ ⊢ □⪰𝛾𝐴

Γ, ▶𝛾′:⪰𝛾 , ◀pos(Γ) ⊢ □⪰𝛾𝐴 □-E
Γ, ▶𝛾′:⪰𝛾 ⊢ 𝐴

2. By induction on derivation. ◀

▶ Lemma 5.4 (Truth Lemma (On page 10)). Γ, 𝛾 ⊩c A ⇐⇒ Γ, ◀! ⊢ □⪰𝛾A.

Proof. By induction on the size of 𝐴, using Lemma C.4.

▷ Case (𝐴 ≡ 𝑝). By definition.
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▷ Case (𝐴 ≡ 𝐵 → 𝐶).

(⇐=) Suppose Γ, ◀! ⊢ □⪰𝛾(𝐵 → 𝐶). Take Δ ≽c Γ and 𝛿 ⪰c
Δ 𝛾 satisfying Δ, 𝛿 ⊩𝜌c

Γ 𝐵.
Since 𝜌c

Δ ↾DomC(Γ) = 𝜌c
Γ, we have Δ, 𝛿 ⊩c 𝐵, and the IH yields Δ, ◀! ⊢ □⪰𝛿𝐵. Then we can

derive

Γ, ◀! ⊢ □⪰𝛾(𝐵 → 𝐶)

Δ, ◀! ⊢ □⪰𝛾(𝐵 → 𝐶)

Δ, ◀! , ▶𝛿′:⪰𝛿 ⊢ 𝐵 → 𝐶

Δ, ◀! ⊢ □⪰𝛿𝐵

Δ, ◀! , ▶𝛿′:⪰𝛿 ⊢ 𝐵 →-E
Δ, ◀! , ▶𝛿′:⪰𝛿 ⊢ 𝐶 □-I

Δ, ◀! ⊢ □⪰𝛿𝐶

By the IH, Δ, 𝛿 ⊩c 𝐶 holds, and so does Δ, 𝛿 ⊩𝜌c
Γ 𝐶, which implies Γ, 𝛾 ⊩c 𝐵 → 𝐶.

(=⇒) We argue by contrapositive. Suppose Γ, ◀! ⊬ □⪰𝛾(𝐵 → 𝐶). Let Δ ≡ Γ, ◀! , ▶𝛾′:⪰𝛾 ,

𝑥 :𝛿 𝐵. Then we must have Δ, ◀! ⊬ □⪰𝛿𝐶; otherwise we could derive

Δ, ◀! ⊢ □⪰𝛿𝐶 □-E
Γ, ◀! , ▶𝛾′:⪰𝛾 , 𝑥 :𝛿 𝐵 ⊢ 𝐶 →-I
Γ, ◀! , ▶𝛾′:⪰𝛾 ⊢ 𝐵 → 𝐶 □-I
Γ, ◀! ⊢ □⪰𝛾(𝐵 → 𝐶)

a contradiction. By the IH, we have Δ, 𝛿 ⊮c 𝐶, and also Δ, 𝛿 ⊩𝜌c
Γ 𝐶 as FC(𝐶) ⊆ DomC(Γ).

Applying a similar argument to

Var
Δ, ◀! , ▶𝛿′:⪰𝛿 ⊢ 𝐵 □-I

Δ, ◀! ⊢ □⪰𝛿𝐵

yields Δ, 𝛿 ⊩𝜌c
Γ 𝐵. Since Δ ≽c Γ and 𝛿 ⪰c

Δ 𝛾, we see Γ, 𝛾 ⊮c 𝐵 → 𝐶.
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▷ Case (𝐴 ≡ □⪰𝛾1𝐵).

(⇐=) Suppose Γ, ◀! ⊢ □⪰𝛾□⪰𝛾1𝐵. Take Δ ≽c Γ and 𝛿 ⊒c
Δ 𝛾 satisfying 𝛿 ⪰c

Δ 𝛾1. Then we
can derive

Γ, ◀! ⊢ □⪰𝛾□⪰𝛾1𝐵

Δ, ◀! , ▶𝛿′:⪰𝛿, ◀𝛾 , ◀! ⊢ □⪰𝛾□⪰𝛾1𝐵 □-E
Δ, ◀! , ▶𝛿′:⪰𝛿, ◀𝛾 ⊢ □⪰𝛾1𝐵 □-E

Δ, ◀! , ▶𝛿′:⪰𝛿 ⊢ 𝐵 □-I
Δ, ◀! ⊢ □⪰𝛿𝐵

By the IH, Δ, 𝛿 ⊩c 𝐵 holds, and so does Δ, 𝛿 ⊩𝜌c
Γ 𝐵, which implies Γ, 𝛾 ⊩c □⪰𝛾1𝐵.

(=⇒) We argue by contrapositive. Suppose Γ, ◀! ⊬ □⪰𝛾□⪰𝛾1𝐵. Let Δ ≡ Γ, ◀! , ▶𝛾′:⪰𝛾 ,

▶𝛿:⪰𝛾1 . Then we must have Δ, ◀! ⊬ □⪰𝛿𝐵; otherwise we could derive

Δ, ◀! ⊢ □⪰𝛿𝐵 □-E
Γ, ◀! , ▶𝛾′:⪰𝛾 , ▶𝛿:⪰𝛾1 ⊢ 𝐵 □-I

Γ, ◀! , ▶𝛾′:⪰𝛾 ⊢ □⪰𝛾1𝐵 □-I
Γ, ◀! ⊢ □⪰𝛾□⪰𝛾1𝐵

a contradiction. By the IH, we have Δ, 𝛿 ⊮c 𝐵 and hence Δ, 𝛿 ⊩𝜌c
Γ 𝐵. As Δ ≽c Γ and

𝛿 ⊒c
Δ 𝛾 with 𝛿 ⪰c

Δ 𝛾1, we see Γ, 𝛾 ⊮c □⪰𝛾1𝐵.

▷ Case (𝐴 ≡ ∀𝛾2 :⪰ 𝛾1. 𝐵).

(⇐=) Suppose Γ, ◀! ⊢ □⪰𝛾(∀𝛾2 :⪰ 𝛾1. 𝐵). Take Δ ≽c Γ and 𝛿 ⪰c
Δ 𝛾1. Then we can derive

Γ, ◀! ⊢ □⪰𝛾(∀𝛾2 :⪰ 𝛾1. 𝐵)

Δ, ◀! ⊢ □⪰𝛾(∀𝛾2 :⪰ 𝛾1. 𝐵)

Δ, ◀! , ▶𝛾′:⪰𝛾 ⊢ ∀𝛾2 :⪰ 𝛾1. 𝐵 ∀-E
Δ, ◀! , ▶𝛾′:⪰𝛾 ⊢ 𝐵[𝛾2 := 𝛿]

□-I
Δ, ◀! ⊢ □⪰𝛾𝐵[𝛾2 := 𝛿]

By the IH, Δ, 𝛾 ⊩c 𝐵[𝛾2 := 𝛿] holds, and so does Δ, 𝛾 ⊩𝜌c
Γ·[𝛾2 ↦→𝛿] 𝐵, which yields Γ, 𝛾 ⊩c

∀𝛾2 :⪰ 𝛾1. 𝐵.

(=⇒) We argue by contrapositive. Suppose Γ, ◀! ⊬ □⪰𝛾(∀𝛾2 :⪰ 𝛾1. 𝐵). Let Δ ≡
Γ, ◀! , ▶𝛾′:⪰𝛾 , 𝛾2 :⪰ 𝛾1. Then we must have Δ, ◀! ⊬ ∀𝛾2 :⪰ 𝛾1. 𝐵; otherwise we could derive

Δ, ◀! ⊢ □⪰𝛾𝐵 □-E
Γ, ◀! , ▶𝛾′:⪰𝛾 , 𝛾2 :⪰ 𝛾1 ⊢ 𝐵 ∀-I
Γ, ◀! , ▶𝛾′:⪰𝛾 ⊢ ∀𝛾2 :⪰ 𝛾1. 𝐵 □-I
Γ, ◀! ⊢ □⪰𝛾(∀𝛾2 :⪰ 𝛾1. 𝐵)

a contradiction. By the IH, we have Δ, 𝛾 ⊮c 𝐵, and hence Δ, 𝛾 ⊮𝜌c
Γ·[𝛾2 ↦→𝛾2] 𝐵. Since Δ ≽c Γ,

we see Γ, 𝛾 ⊩c ∀𝛾2 :⪰ 𝛾1. 𝐵. ◀
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▶ Theorem 5.5 (Kripke Completeness (On page 10)).
1. If Γ ⊩ A, then Γ ⊢ A.
2. If Γ ⊩ 𝛾1 ⪯ 𝛾2, then Γ ⊢ 𝛾1 ⪯ 𝛾2.
3. If Γ ⊩ 𝛾1 ⊑ 𝛾2, then Γ ⊢ 𝛾1 ⊑ 𝛾2.

Proof. By the contrapositive, where we can take the canonical model as countermodel by
Lemma 5.4. ◀

D Full Definitions and Proofs for Section 6

▶ Definition D.1. FC(M ) represent a set of free classifiers in M.

FC(x) = ∅
FC(𝜆x :𝛾 A. M ) = FC(M ) ∪ {𝛾}

FC(M1M2) = FC(M1) ∪ FC(M2)
FC(quo{𝛾1:⪰𝛾2M}) = (FC(M ) ∪ {𝛾2}) − {𝛾1}

FC(unq{𝛾M}) = FC(M ) ∪ {𝛾}
FC(𝜆𝛾1 :⪰ 𝛾2. M ) = (FC(M ) − {𝛾1}) ∪ {𝛾2}

FC(M𝛾) = FC(M ) ∪ {𝛾}

▶ Definition D.2. FV(M ) represents a set of free variables in M.

FV(x) = {x}
FV(𝜆x :𝛾 A. M ) = FV(M ) − {x}

FV(M1M2) = FV(M1) ∪ FV(M2)
FV(quo{𝛾1:⪰𝛾2M}) = FV(M )

FV(unq{𝛾M}) = FV(M )
FV(𝜆𝛾1 :⪰ 𝛾2. M ) = FV(M )

FV(M𝛾) = FV(M )

▶ Definition D.3. A classifier substitution (−)[𝛾1 := 𝛾2] is a meta operation on terms and
contexts, which replaces free occurrences of 𝛾1 with 𝛾2.

x[𝛾1 := 𝛾2] = x
(𝜆x :𝛾1 A. M )[𝛾2 := 𝛾3] = 𝜆x :𝛾1 A[𝛾2 := 𝛾3]. (M [𝛾2 := 𝛾3])

where 𝛾1 /∈ {𝛾2, 𝛾3}
(MN )[𝛾1 := 𝛾2] = (M [𝛾1 := 𝛾2])(N [𝛾1 := 𝛾2])

quo{𝛾1:⪰𝛾2M}[𝛾3 := 𝛾4] = quo{𝛾1:⪰𝛾2[𝛾3:=𝛾4]M [𝛾3 := 𝛾4]}
where 𝛾1 /∈ {𝛾3, 𝛾4}

unq{𝛾1M}[𝛾2 := 𝛾3] = unq{𝛾1[𝛾2:=𝛾3]M [𝛾1 := 𝛾2]}
(𝜆𝛾1 :⪰ 𝛾2. M )[𝛾3 := 𝛾4] = 𝜆𝛾1 :⪰ 𝛾2[𝛾3 := 𝛾4]. (M [𝛾3 := 𝛾4])

where 𝛾1 /∈ {𝛾3, 𝛾4}
(M𝛾1)[𝛾2 := 𝛾3] = (M [𝛾2 := 𝛾3])𝛾1[𝛾2 := 𝛾3]

𝜀[𝛾1 := 𝛾2] = 𝜀
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(x :𝛾1 A, Γ)[𝛾2 := 𝛾3] = x :𝛾1 A[𝛾2 := 𝛾3], Γ[𝛾2 := 𝛾3]
where 𝛾1 /∈ {𝛾2, 𝛾3}

(▶𝛾1:⪰𝛾2 , Γ)[𝛾3 := 𝛾4] = ▶𝛾1:⪰𝛾2[𝛾3:=𝛾4], Γ[𝛾3 := 𝛾4]
where 𝛾1 /∈ {𝛾3, 𝛾4}

(◀𝛾1 , Γ)[𝛾2 := 𝛾3] = ◀𝛾1[𝛾2:=𝛾3], Γ[𝛾2 := 𝛾3]
(𝛾1 :⪰ 𝛾2, Γ)[𝛾3 := 𝛾4] = 𝛾1 :⪰ 𝛾2[𝛾3 := 𝛾4], Γ[𝛾3 := 𝛾4]

where 𝛾1 /∈ {𝛾3, 𝛾4}

▶ Definition D.4. A variable substitution (−)[𝛾1 := 𝛾2, x := M ] is a meta operation on terms
that replaces free occurrences of 𝛾1 and x with 𝛾2 and M, respectively. Its definition is given
in Figure 10.

x[𝛾1 := 𝛾2, y := M ] =
{︃

𝑀 where x = y
𝑥 otherwise

(𝜆x :𝛾1 A. M )[𝛾2 := 𝛾3, y := M ] = 𝜆x :𝛾1 A[𝛾2 := 𝛾3]. (M [𝛾2 := 𝛾3, y := M ])
where 𝛾1 /∈ {𝛾2, 𝛾3} and x ̸= y

(M1M2)[𝛾1 := 𝛾2, x := N ] = M1[𝛾1 := 𝛾2, x := N ]M2[𝛾1 := 𝛾2, y := N ]
quo{𝛾1:⪰𝛾2M}[𝛾3 := 𝛾4, x := N ] = quo{𝛾1:⪰𝛾2[𝛾3:=𝛾4]M [𝛾3 := 𝛾4, x := N ]}

where 𝛾1 /∈ {𝛾3, 𝛾4}
unq{𝛾1M}[𝛾2 := 𝛾3, x := N ] = unq{𝛾1[𝛾2:=𝛾3]M [𝛾2 := 𝛾3, x := N ]}

(𝜆𝛾1 :⪰ 𝛾2. M )[𝛾3 := 𝛾4, x := N ] = 𝜆𝛾1 :⪰ 𝛾2[𝛾3 := 𝛾4]. (M [𝛾3 := 𝛾4, x := N ])
where 𝛾1 /∈ {𝛾3, 𝛾4}

(M𝛾1)[𝛾2 := 𝛾3, x := N ] = M [𝛾2 := 𝛾3, x := N ]𝛾1[𝛾2 := 𝛾3]

Figure 10 Definition of Variable Substitution

Lemmas 6.1–6.3 are proved as parts of the following lemmas.

▶ Lemma D.5 (Variable Substitution (Full Version)). Suppose Δ1 = Γ𝛾1
1 , x :𝛾2 A, Γ2, and

Δ2 = Γ1, Γ2[𝛾2 := 𝛾1]. Then, the following statements hold.
1. ⊢ Δ1 : ctx =⇒ ⊢ Δ2 : ctx.
2. Δ1 ⊢ A : type =⇒ Δ2 ⊢ A[𝛾2 := 𝛾1] : type.
3. Δ1 ⊢ 𝛿1 ⪯ 𝛿2 =⇒ Δ2 ⊢ 𝛿1[𝛾2 := 𝛾1] ⪯ 𝛿2[𝛾2 := 𝛾1].
4. Δ1 ⊢ 𝛿1 ⊑ 𝛿2 =⇒ Δ2 ⊢ 𝛿1[𝛾2 := 𝛾1] ⊑ 𝛿2[𝛾2 := 𝛾1].
5. Δ1 ⊢ M1 : B and Γ1 ⊢ M2 : A =⇒ Δ2 ⊢ M1[𝛾2 := 𝛾1, x := M2] : B[𝛾2 := 𝛾1].

Proof. By mutual induction on the derivation of the first judgment for each statements.
To prove the case of typing judgment, we use Lemma 3.2 for the base case where M1 is
variable. ◀

▶ Lemma D.6 (Rebasing (Full Version)). Suppose Δ1 = (Γ𝛾1
1 , ◀𝛾2 , ▶𝛾3:⪰𝛾4 , Γ2), and

Δ2 = Γ1, Γ2[𝛾3 := 𝛾1]. Supposing Γ1 ⊢ 𝛾4 ⪯ 𝛾1, the following statements hold,
1. ⊢ Δ1 : ctx =⇒ ⊢ Δ2 : ctx.
2. Δ1 ⊢ A : type =⇒ Δ2 ⊢ A[𝛾3 := 𝛾1] : type.
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3. Δ1 ⊢ 𝛿1 ⪯ 𝛿2 =⇒ Δ2 ⊢ 𝛿1[𝛾3 := 𝛾1] ⪯ 𝛿2[𝛾3 := 𝛾1].
4. Δ1 ⊢ 𝛿1 ⊑ 𝛿2 =⇒ Δ2 ⊢ 𝛿1[𝛾3 := 𝛾1] ⊑ 𝛿2[𝛾3 := 𝛾1].
5. Δ1 ⊢ M1 : A =⇒ Δ2 ⊢ M [𝛾3 := 𝛾1] : A[𝛾3 := 𝛾1].
Proof. By mutual induction on the first derivation of each statements. ◀

▶ Lemma D.7 (Classifier Substitution (Full Version)). Suppose Δ1 = Γ1, 𝛾1 :⪰ 𝛾2, Γ2 and
Δ2 = Γ1, Γ2[𝛾1 := 𝛾3]. Given Γ1 ⊢ 𝛾2 ⪯ 𝛾3, then the following statements hold.
1. Δ1 ⊢ A : type =⇒ Δ2 ⊢ A[𝛾1 := 𝛾3] : type.
2. ⊢ Δ1 : ctx =⇒ ⊢ Δ2 : ctx.
3. Δ1 ⊢ 𝛿1 ⪯ 𝛿2 =⇒ Δ2 ⊢ 𝛿1[𝛾1 := 𝛾3] ⪯ 𝛿2[𝛾1 := 𝛾3].
4. Δ1 ⊢ 𝛿1 ⊑ 𝛿2 =⇒ Δ2 ⊢ 𝛿1[𝛾1 := 𝛾3] ⊑ 𝛿2[𝛾1 := 𝛾3].
5. Δ1 ⊢ M : A =⇒ Δ2 ⊢ M [𝛾1 := 𝛾3] : A[𝛾1 := 𝛾3].
Proof. By mutual induction on the first derivation of each statements. ◀

▶ Lemma 6.4 (Local Soundness Patterns (On page 11)).
1. Γ𝛾1 ⊢ (𝜆x :𝛾2 A. M )N : B =⇒ Γ ⊢ M [𝛾2 := 𝛾1, x := N ] : B.
2. Γ𝛾1 ⊢ unq{𝛾2quo{𝛾3:⪰𝛾4M}} : A =⇒ Γ ⊢ M [𝛾3 := 𝛾1] : A.
3. Γ ⊢ (𝜆𝛾1 :⪰ 𝛾2. M )𝛾3 : A =⇒ Γ ⊢ M [𝛾1 := 𝛾3] : A.
Proof. Easy to prove with Lemma 6.1, Lemma 6.2 and Lemma 6.3. ◀

▶ Lemma 6.5 (Local Completeness Patterns (On page 11)). (𝛿 is taken freshly)
1. Γ ⊢ M : A → B =⇒ Γ ⊢ 𝜆x :𝛿 A. (Mx) : A → B.
2. Γ𝛾1 ⊢ M : □⪰𝛾2A =⇒ Γ ⊢ quo{𝛿:⪰𝛾2unq{𝛾1M}} : □⪰𝛾2A.
3. Γ ⊢ M : ∀𝛾1 :⪰ 𝛾2. A =⇒ Γ ⊢ 𝜆𝛿 :⪰ 𝛾2. (M𝛿) : ∀𝛾1 :⪰ 𝛾2. A.
Proof. Easy to prove with Lemma 3.2. ◀

▶ Definition D.8 (Full rules for Definition 6.6 (𝛽-reduction)). The full definition of derivation
rules for M1 ⇒𝛾

𝛽 M2 are follows.

Axioms

(𝜆x :𝛾2 A. M )N@𝛾1 ⇒𝛽 M [𝛾2 := 𝛾1, x := N ]
unq{𝛾2quo{𝛾3:⪰𝛾4M}}@𝛾1 ⇒𝛽 M [𝛾3 := 𝛾1]

(𝜆𝛾2 :⪰ 𝛾3. M )𝛾4@𝛾1 ⇒𝛽 M [𝛾2 := 𝛾4]

Compatibility Rules

M1 ⇒𝛾1
𝛽 M2

𝜆x :𝛾1 A. M1 ⇒𝛾2
𝛽 𝜆x :𝛾1 A. M2

M1 ⇒𝛾1
𝛽 M2

M1N ⇒𝛾1
𝛽 M2N

M1 ⇒𝛾1
𝛽 M2

NM1 ⇒𝛾1
𝛽 NM2

M1 ⇒𝛾1
𝛽 M2

quo{𝛾1:⪰𝛾2M1} ⇒𝛾3
𝛽 quo{𝛾1:⪰𝛾2M2}

M1 ⇒𝛾1
𝛽 M2

unq{𝛾1M1} ⇒𝛾2
𝛽 unq{𝛾1M2}

M1 ⇒𝛾1
𝛽 M2

𝜆𝛾2 :⪰ 𝛾3. M1 ⇒𝛾1
𝛽 𝜆𝛾2 :⪰ 𝛾3. M2

M1 ⇒𝛾1
𝛽 M2

M1𝛾2 ⇒𝛾1
𝛽 M2𝛾2

▶ Theorem 6.7 (Subject Reduction (On page 12)). If Γ𝛾 ⊢ M1 : A and M1 ⇒𝛾
𝛽 M2, then

Γ ⊢ M2 : A.
Proof. By induction on the derivation of M1 ⇒𝛾

𝛽 M2. For base cases, we apply Lemma 6.4. ◀
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ℰ-id

Γ ⊢ 𝑥 : 𝐴

Γ ⊢ 𝑥 ∈ ℰ⟦𝐴⟧

ℰ-blur
∀Δ ≽ Γ.

(︀
Δ ⊢ 𝐾 ∈ 𝒦⟦𝐴⟧ =⇒ 𝐾[𝑀 ] ∈ SN

)︀
Γ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧

𝒦-id

Γ ⊢ [−] ∈ 𝒦⟦𝐴⟧

𝒦-→
Γ ⊢ 𝑁 ∈ ℰ⟦𝐴⟧ Γ ⊢ 𝐾 ∈ 𝒦⟦𝐵⟧

Γ ⊢ 𝐾[[−]𝑁 ] ∈ 𝒦⟦𝐴 → 𝐵⟧

𝒦-□
Γ ⊢ 𝛾 ⊑ pos(Γ) Γ ⊢ 𝛾1 ⪯ pos(Γ) Γ ⊢ 𝐾 ∈ 𝒦⟦𝐴⟧

Γ, ◀𝛾 ⊢ 𝐾[unq{𝛾 [−]}] ∈ 𝒦⟦□⪰𝛾1𝐴⟧

𝒦-∀
Γ ⊢ 𝛾1 ⪯ 𝛾 Γ ⊢ 𝐾 ∈ 𝒦⟦𝐴[𝛾2 := 𝛾]⟧

Γ ⊢ 𝐾[[−]𝛾] ∈ 𝒦⟦∀𝛾2 :⪰ 𝛾1. 𝐴⟧

𝒞-id

Γ ⊢ ∅ ∈ 𝒞⟦Γ⟧

𝒞-weak
Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Δ ≼ Δ′

Δ′ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧

𝒞-→
Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Δ ⊢ 𝑀 ∈ ℰ⟦𝐴 𝜎⟧

Δ ⊢ 𝜎 · [𝛾 := pos(Δ), 𝑥 := 𝑀 ] ∈ 𝒞⟦Γ, 𝑥 :𝛾 𝐴⟧

𝒞-□
Δ, ◀𝛾 ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Δ ⊢ 𝛾1 𝜎 ⪯ pos(Δ)

Δ ⊢ 𝜎 · [𝛾2 := pos(Δ)] ∈ 𝒞⟦Γ, ▶𝛾2:⪰𝛾1⟧

𝒞-∀
Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Δ ⊢ 𝛾1 𝜎 ⪯ 𝛾

Δ ⊢ 𝜎 · [𝛾2 := 𝛾] ∈ 𝒞⟦Γ, 𝛾2 :⪰ 𝛾1⟧

𝒞-◀
Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧

Δ, ◀𝛾 𝜎 ⊢ 𝜎 ∈ 𝒞⟦Γ, ◀𝛾⟧

Γ ≼ Δ ⇐⇒

⎧⎪⎨⎪⎩
Γ ⊢ 𝛾1 ⊴ 𝛾2 =⇒ Δ ⊢ 𝛾1 ⊴ 𝛾2;
𝑥 :𝛾 𝐴 ∈ Γ =⇒ 𝑥 :𝛾 𝐴 ∈ Δ; and
Δ ⊢ pos(Γ) ⪯ pos(Δ)

Figure 11 Reducibility. The predicates ℰ⟦𝐴⟧, 𝒦⟦𝐴⟧, and 𝒞⟦Γ⟧ are for terms, for continuations,
and for substitutions (contexts), respectively.

D.1 Metatheory
To define reducibility, we adopt the idea of using continuations from Lindley [16]. A
continuation 𝐾 is a term context defined by the following grammar:

𝐾 ::= [−]
⃒⃒

𝐾[[−]𝑁 ]
⃒⃒

𝐾[unq{𝛾 [−]}]
⃒⃒

𝐾[[−]𝛾].

Figure 11 defines the predicates ℰ⟦𝐴⟧ for terms and 𝒦⟦𝐴⟧ for continuations, simultaneously
inductively on 𝐴. To provide a proper computational interpretation, each predicate is
indexed by a context Γ, which is particularly crucial in BML because: 1. the reduction is a
position-aware relation; and 2. ◀’s cannot be removed from a context by abstraction.

The preorder ≼ generalizes the canonical relation ≼c from Definition 5.2 while taking
the position pos(Γ) into account to ensure typeability. To accommodate monotonicity,
Γ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧ verifies the SN-ability of 𝑀 with all reducible continuations 𝐾 under all
≼-successor contexts Δ of Γ, whereas Γ ⊢ 𝐾 ∈ 𝒦⟦𝐴⟧ is just validated locally within Γ.

▶ Lemma D.9. If Γ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧, then 𝑀 ∈ SN.

Proof. If ℰ-id is applied, then obvious; otherwise follows from Γ ⊢ [−] ∈ 𝒦⟦𝐴⟧ by 𝒦-id. ◀
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▶ Lemma D.10 (SN-closure).
1. If 𝑁 ∈ SN and 𝐾[𝑀 [𝛾 := 𝛾′, 𝑥 := 𝑁 ]] ∈ SN, then 𝐾[(𝜆𝑥 :𝛾 𝐴. 𝑀)𝑁 ] ∈ SN.
2. If 𝐾[𝑀 [𝛾2 := 𝛾′]] ∈ SN, then 𝐾[unq{𝛾3 quo{𝛾2:⪰𝛾1 𝑀}}] ∈ SN.
3. If 𝐾[𝑀 [𝛾2 := 𝛾3]] ∈ SN, then 𝐾[(𝜆𝛾2 :⪰ 𝛾1. 𝑀)𝛾3] ∈ SN.

Proof. By the contrapositive. ◀

Next, we consider the interpretation of a context. A simultaneous substitution 𝜎 is defined
by the following grammar:

𝜎 ::= ∅ | 𝜎 · [𝛾 := 𝛾′, 𝑥 := 𝑀 ] | 𝜎 · [𝛾 := 𝛾′],

where the symbol ∅ denotes an empty substitution that does not replace any variable or
classifier. Figure 11 gives the definition of a reducible substitution Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧, whereby
variables and classifiers declared in Γ are instantiated under Δ.

▶ Lemma D.11 (Reducibility-closure). The following rules are admissible:

ℰ-→

∀Δ ≽ Γ.

(︃
Δ ⊢ 𝑁 ∈ ℰ⟦𝐴⟧ =⇒

Δ ⊢ 𝑀 [𝛾 := pos(Δ), 𝑥 := 𝑁 ] ∈ ℰ⟦𝐵⟧

)︃
Γ ⊢ 𝜆𝑥 :𝛾 𝐴. 𝑀 ∈ ℰ⟦𝐴 → 𝐵⟧

ℰ-□

∀
(︀
Δ, ◀𝛿

)︀
≽ Γ.

⎛⎜⎝Δ ⊢ 𝛿 ⊑ pos(Δ)
and Δ ⊢ 𝛾1 ⪯ pos(Δ) =⇒
Δ ⊢ 𝑀 [𝛾2 := pos(Δ)] ∈ ℰ⟦𝐴⟧

⎞⎟⎠
Γ ⊢ quo{𝛾2:⪰𝛾1 𝑀} ∈ ℰ⟦□⪰𝛾1𝐴⟧

ℰ-∀

∀Δ ≽ Γ.

(︃
Δ ⊢ 𝛾1 ⪯ 𝛾 =⇒

Δ ⊢ 𝑀 [𝛾2 := 𝛾] ∈ ℰ⟦𝐴[𝛾2 := 𝛾]⟧

)︃
Γ ⊢ 𝜆𝛾2 :⪰ 𝛾1. 𝑀 ∈ ℰ⟦∀𝛾2 :⪰ 𝛾1. 𝐴⟧

Proof. By simply checking the condition of ℰ-blur.

Rule ℰ-→. Suppose Δ ≽ Γ. Take Δ ⊢ 𝐾 ∈ 𝒦⟦𝐴 → 𝐵⟧ to show 𝐾[𝜆𝑥 :𝛾 𝐴. 𝑀 ] ∈ SN. For
the last rule of the derivation of 𝐾, there are two possibilities:

▷ Case (𝒦-id). We may assume without loss of generality that 𝑥 /∈ DomV(Δ) and
𝛾 /∈ DomC(Δ). Let Δ′ ≡ Δ, 𝑥 :𝛾 𝐴. Then we have Γ ≼ Δ′ and Δ′ ⊢ 𝑥 ∈ ℰ⟦𝐴⟧. By
assumption, we obtain Δ′ ⊢ 𝑀 [𝛾 := 𝛾, 𝑥 := 𝑥] ≡ 𝑀 ∈ ℰ⟦𝐵⟧, and Lemma D.9 yields 𝑀 ∈ SN.
Thus, 𝜆𝑥 :𝛾 𝐴. 𝑀 ∈ SN.

▷ Case (𝒦-→). Then we have 𝐾 ≡ 𝐾 ′[[−]𝑁 ] for some Δ ⊢ 𝑁 ∈ ℰ⟦𝐴⟧ and Δ ⊢ 𝐾 ′ ∈ 𝒦⟦𝐵⟧.
By assumption we have Δ ⊢ 𝑀 [𝛾 := pos(Δ), 𝑥 := 𝑁 ] ∈ ℰ⟦𝐵⟧, and hence 𝐾 ′[𝑀 [𝛾 :=
pos(Δ), 𝑥 := 𝑁 ]] ∈ SN. By Lemma D.10 we see 𝐾 ′[(𝜆𝑥 :𝛾 𝐴. 𝑀)𝑁 ] ∈ SN.
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Rule ℰ-□. Suppose
(︀
Δ, ◀𝛿

)︀
≽ Γ. Take Δ, ◀𝛿 ⊢ 𝐾 ∈ 𝒦⟦□⪰𝛾1𝐴⟧ to show 𝐾[quo{𝛾2:⪰𝛾1

𝑀}] ∈ SN. For the last rule of the derivation of 𝐾, there are two possibilities:

▷ Case (𝒦-id). We may assume without loss of generality that 𝛾2 /∈ DomC(Δ). Let
Δ′ ≡ Δ, ◀𝛿, ▶𝛾2:⪰𝛾1 . Then we have Γ ≼

(︀
Δ′, ◀𝛿

)︀
with Δ′ ⊢ 𝛿 ⊑ 𝛾2 and Δ′ ⊢ 𝛾1 ⪯ 𝛾2. By

assumption we have Δ′ ⊢ 𝑀 [𝛾2 := 𝛾2] ≡ 𝑀 ∈ ℰ⟦𝐴⟧, and Lemma D.9 yields 𝑀 ∈ SN. Thus,
quo{𝛾2:⪰𝛾1 𝑀} ∈ SN.

▷ Case (𝒦-□). Then we have 𝐾 ≡ 𝐾 ′[unq{𝛿 [−]}] for some Δ ⊢ 𝐾 ∈ 𝒦⟦𝐴⟧ with Δ ⊢ 𝛿 ⊑
pos(Δ) and Δ ⊢ 𝛾1 ⪯ pos(Δ). By assumption we have Δ ⊢ 𝑀 [𝛾2 := pos(Δ)] ∈ ℰ⟦𝐴⟧, and
hence 𝐾 ′[𝑀 [𝛾2 := pos(Δ)]] ∈ SN. By Lemma D.10 we see 𝐾 ′[unq{𝛿 quo{𝛾2:⪰𝛾1 𝑀}}] ∈ SN.

Rule ℰ-∀. Suppose Δ ≽ Γ. Take Δ ⊢ 𝐾 ∈ 𝒦⟦∀𝛾2 :⪰ 𝛾1. 𝐴⟧ to show 𝐾[𝜆𝛾2 :⪰ 𝛾1. 𝑀 ] ∈ SN.
For the last rule of the derivation of 𝐾, there are two possibilities:

▷ Case (𝒦-id). We may assume without loss of generality that 𝛾2 /∈ DomC(Δ). Let
Δ′ ≡ Δ, 𝛾2 :⪰ 𝛾1. Then we have Γ ≼ Δ′ with Δ′ ⊢ 𝛾1 ⪯ 𝛾2. By assumption we obtain
Δ′ ⊢ 𝑀 [𝛾2 := 𝛾2] ≡ 𝑀 ∈ ℰ⟦𝐴⟧, and Lemma D.9 yields 𝑀 ∈ SN. Thus, 𝜆𝛾2 :⪰ 𝛾1. 𝑀 ∈ SN.

▷ Case (𝒦-∀). Then we have 𝐾 ≡ 𝐾 ′[[−]𝛾] for some Δ ⊢ 𝐾 ′ ∈ 𝒦⟦𝐴[𝛾2 := 𝛾]⟧ with
Δ ⊢ 𝛾1 ⪯ 𝛾. By assumption we obtain Δ ⊢ 𝑀 [𝛾2 := 𝛾] ∈ ℰ⟦𝐴[𝛾2 := 𝛾]⟧, and hence
𝐾 ′[𝑀 [𝛾2 := 𝛾]] ∈ SN. By Lemma D.10 we see 𝐾 ′[(∀𝛾2 :⪰ 𝛾1. 𝑀)𝛾] ∈ SN. ◀

▶ Lemma D.12 (Monotonicity w.r.t. ≼). Suppose Γ ≼ Δ. If Γ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧, then
Δ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧.

Proof. If ℰ-id is applied, then it can also be applied to 𝑥 in Δ as Δ ≽ Γ; otherwise, take
Δ′ ≽ Δ and Δ′ ⊢ 𝐾 ∈ 𝒦⟦𝐴⟧. Then we have Γ ≼ Δ ≼ Δ′, and thus 𝐾[𝑀 ] ∈ SN as
Γ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧, which implies Δ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧. ◀

▶ Lemma D.13 (Monotonicity regarding 𝒞⟦Γ⟧). Suppose Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧.
1. It holds that Δ ⊢ pos(Γ) 𝜎 ⪯ pos(Δ).
2. If Γ ⊢ 𝛾1 ⪯ 𝛾2, then Δ ⊢ 𝛾1 𝜎 ⪯ 𝛾2 𝜎.
3. If Γ ⊢ 𝛾1 ⊑ 𝛾2, then Δ ⊢ 𝛾1 𝜎 ⊑ 𝛾2 𝜎.

Proof. By induction on the derivation of Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧. ◀

▶ Lemma D.14. Suppose

...
Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧

...
Δ′ ⊢ 𝜎 · 𝜎′ ∈ 𝒞⟦Γ, Γ′⟧

If Γ ≼ Γ, Γ′, then Δ′ ≼ Δ.

Γ, Γ′ Δ′

Γ Δ

𝜎·𝜎′

≼
𝜎

≼
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Proof. Check all conditions for Δ ≼ Δ′.
To show Δ′ ⊢ pos(Δ) ⪯ pos(Δ′), we proceed by induction on derivation. If either 𝒞-weak

or 𝒞-∀ is applied, then it follows from the IH; otherwise, we have pos(Γ, Γ′) (𝜎 · 𝜎′) ≡ pos(Δ′).
By Lemma D.13, it holds that

Δ′ ⊢ pos(Γ) 𝜎 ⪯ pos(Γ, Γ′) and
Δ′ ⊢ pos(Γ, Γ′) 𝜎 ⪯ pos(Δ′),

which implies Δ′ ⊢ pos(Δ) ⪯ pos(Δ′).
The other conditions are shown by straightforward induction. ◀

▶ Lemma D.15 (Fundamental property). Suppose Γ ⊢ 𝑀 : 𝐴. If Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧, then
Δ ⊢ 𝑀 𝜎 ∈ ℰ⟦𝐴 𝜎⟧.

Proof. By induction on the derivation of Γ ⊢ 𝑀 : 𝐴. Taking Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧, We analyze the
last rule of the derivation:

▷ Case (Var). If 𝑥 /∈ DomV(𝜎), then it follows from Lemma D.12; otherwise, it follows from
Lemma D.14.

▷ Case (→-I). Assume

Γ, 𝑥 :𝛾 𝐵 ⊢ 𝑁 : 𝐶 𝛾 /∈ FC(𝐶)

Γ ⊢ 𝜆𝑥 :𝛾 𝐵. 𝑁 : 𝐵 → 𝐶

Take Δ′ ≽ Δ with Δ′ ⊢ 𝑃 ∈ ℰ⟦𝐵 𝜎⟧. Then we have

Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧
𝒞-weak

Δ′ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Δ′ ⊢ 𝑃 ∈ ℰ⟦𝐵 𝜎⟧
𝒞-→

Δ′ ⊢ 𝜎 · [𝛾 := pos(Δ′), 𝑥 := 𝑃 ] ∈ 𝒞⟦Γ, 𝑥 :𝛾 𝐵⟧

By the IH, we have

Δ′ ⊢ 𝑁 (𝜎 · [𝛾 := pos(Δ′), 𝑥 := 𝑃 ])
≡ (𝑁 𝜎)[𝛾 := pos(Δ′), 𝑥 := 𝑃 ] ∈ ℰ⟦𝐶 𝜎⟧,

and by ℰ-→, we see

Δ ⊢ 𝜆𝑥 :𝛾 𝐵 𝜎. 𝑁 𝜎

≡ (𝜆𝑥 :𝛾 𝐵. 𝑁) 𝜎 ∈ ℰ⟦(𝐵 → 𝐶) 𝜎⟧.

▷ Case (→-E). Assume

Γ ⊢ 𝑁 : 𝐵 → 𝐶 Γ ⊢ 𝑃 : 𝐵

Γ ⊢ 𝑁𝑃 : 𝐶

Take Δ′ ≽ Δ with Δ ⊢ 𝐾 ∈ 𝒦⟦𝐶 𝜎⟧. Then we have

Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧
𝒞-weak

Δ′ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Γ ⊢ 𝑃 : 𝐵 IH
Δ′ ⊢ 𝑃 𝜎 ∈ ℰ⟦𝐵 𝜎⟧

and
Δ′ ⊢ 𝐾 ∈ 𝒦⟦𝐶 𝜎⟧ Δ′ ⊢ 𝑃 𝜎 ∈ ℰ⟦𝐵 𝜎⟧

𝒦-→
Δ′ ⊢ 𝐾[[−](𝑃 𝜎)] ∈ ℰ⟦(𝐵 → 𝐶) 𝜎⟧
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Applying the IH to 𝑁 yields Δ ⊢ 𝑁 𝜎 ∈ ℰ⟦(𝐵 → 𝐶) 𝜎⟧, so that 𝐾[(𝑁𝑃 ) 𝜎] ∈ SN, implying
Δ ⊢ (𝑁𝑃 ) 𝜎 ∈ ℰ⟦𝐶 𝜎⟧.

▷ Case (□-I). Assume

Γ, ▶𝛾2:⪰𝛾1 ⊢ 𝑁 : 𝐵 𝛾2 /∈ FC(𝐵)

Γ ⊢ quo{𝛾2:⪰𝛾1 𝑁} : □⪰𝛾1𝐵

Take Δ′, ◀𝛿 ≽ Δ with Δ′ ⊢ 𝛿 ⊑ pos(Δ′) and Δ′ ⊢ 𝛾1 𝜎 ⪯ pos(Δ′). Then we have

Δ, ◀𝛿 ⊢ 𝜎 ∈ 𝒞⟦Γ⟧
𝒞-weak

Δ′, ◀𝛿 ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Δ′ ⊢ 𝛾1 𝜎 ⪯ pos(Δ′)
𝒞-□

Δ′ ⊢ 𝜎 · [𝛾2 := pos(Δ′)] ∈ 𝒞⟦Γ, ▶𝛾2:⪰𝛾1⟧

By the IH, we have

Δ′ ⊢ 𝑁 (𝜎 · [𝛾2 := pos(Δ′)])
≡ (𝑁 𝜎)[𝛾2 := pos(Δ′)] ∈ ℰ⟦𝐵 𝜎⟧,

and by ℰ-□, we see

Δ ⊢ quo{𝛾2:⪰𝛾1 𝜎 𝑁 𝜎}
≡ quo{𝛾2:⪰𝛾1 𝑁} 𝜎 ∈ ℰ⟦□⪰𝛾1𝐵 𝜎⟧.

▷ Case (□-E). Assume

Γ, ◀𝛾 ⊢ 𝑁 : □⪰𝛾1𝐵 Γ ⊢ 𝛾1 ⪯ pos(Γ)

Γ ⊢ unq{𝛾 𝑁} : 𝐵

Take Δ′ ≽ Δ with Δ′ ⊢ 𝐾 ∈ 𝒦⟦𝐵 𝜎⟧. Using Lemma D.13 we have

Γ ⊢ 𝛾 ⊑ pos(Γ)

Δ′ ⊢ 𝛾 𝜎 ⊑ pos(Γ) 𝜎 Δ′ ⊢ pos(Γ) 𝜎 ⪯ pos(Δ′)

Δ′ ⊢ 𝛾 𝜎 ⊑ pos(Δ′)

Γ ⊢ 𝛾1 ⪯ pos(Γ)

Δ′ ⊢ 𝛾 𝜎 ⊑ pos(Γ) 𝜎 Δ′ ⊢ pos(Γ) 𝜎 ⪯ pos(Δ′)

Δ′ ⊢ 𝛾1 𝜎 ⪯ pos(Δ′)

and Δ′, ◀𝛾 𝜎 ⊢ 𝐾[unq{𝛾 𝜎 [−]}] ∈ 𝒦⟦□⪰𝛾1𝐵 𝜎⟧ by 𝒦-□. In addition, we have

Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧
𝒞-weak

Δ′ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧
𝒞-◀

Δ′, ◀𝛾 𝜎 ⊢ 𝜎 ∈ 𝒞⟦Γ, ◀𝛾⟧ Γ, ◀𝛾 ⊢ 𝑁 : □⪰𝛾1𝐵
IH

Δ′, ◀𝛾 𝜎 ⊢ 𝑁 𝜎 ∈ ℰ⟦□⪰𝛾1𝐵 𝜎⟧

and therefore 𝐾[unq{𝛾 𝜎 𝑁 𝜎}] ≡ 𝐾[(unq{𝛾 𝑁}) 𝜎] ∈ SN, implying Δ ⊢ (unq{𝛾 𝑁}) 𝜎 ∈
ℰ⟦𝐵 𝜎⟧.
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▷ Case (∀-I). Assume

Γ, 𝛾2 :⪰ 𝛾1 ⊢ 𝑁 : 𝐵

Γ ⊢ 𝜆𝛾2 :⪰ 𝛾1. 𝑁 : ∀𝛾2 :⪰ 𝛾1. 𝐵

Take Δ′ ≽ Δ with Δ′ ⊢ 𝛾1 𝜎 ⪯ 𝛾. Then we have

Δ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧
𝒞-weak

Δ′ ⊢ 𝜎 ∈ 𝒞⟦Γ⟧ Δ′ ⊢ 𝛾1 𝜎 ⪯ 𝛾 𝒞-∀
Δ′ ⊢ 𝜎 · [𝛾2 := 𝛾] ∈ 𝒞⟦Γ, 𝛾2 :⪰ 𝛾1⟧

By the IH, we have Δ′ ⊢ (𝑁 𝜎)[𝛾2 := 𝛾] ∈ ℰ⟦𝐵 𝜎⟧, and by ℰ-∀ we see

Δ ⊢ 𝜆𝛾2 :⪰ 𝛾1 𝜎. 𝑁 𝜎

≡ (𝜆𝛾2 :⪰ 𝛾1. 𝑁) 𝜎 ∈ ℰ⟦(∀𝛾2 :⪰ 𝛾1. 𝐵) 𝜎⟧.

▷ Case (∀-E). Assume

Γ ⊢ 𝑁 : ∀𝛾2 :⪰ 𝛾1. 𝐵 Γ ⊢ 𝛾1 ⪯ 𝛾

Γ ⊢ 𝑁𝛾 : 𝐵[𝛾2 := 𝛾]

Take Δ′ ≽ Δ with Δ ⊢ 𝐾 ∈ 𝒦⟦(𝐵[𝛾2 := 𝛾]) 𝜎⟧. Using Lemma D.13 we have

Γ ⊢ 𝛾1 ⪯ 𝛾

Δ′ ⊢ 𝛾1 𝜎 ⪯ 𝛾 𝜎 Δ′ ⊢ 𝐾 ∈ 𝒦⟦(𝐵[𝛾2 := 𝛾]) 𝜎⟧
𝒞-∀

Δ′ ⊢ 𝐾[[−](𝛾 𝜎)] ∈ 𝒞⟦(∀𝛾2 :⪰ 𝛾1. 𝐵) 𝜎⟧

Applying the IH to 𝑁 yields Δ′ ⊢ 𝑁 𝜎 ∈ ℰ⟦(∀𝛾2 :⪰ 𝛾1. 𝐵) 𝜎⟧, so that 𝐾[(𝑁𝛾) 𝜎] ∈ SN,
implying Δ ⊢ (𝑁𝛾) 𝜎 ∈ ℰ⟦(𝐵[𝛾2 := 𝛾]) 𝜎⟧. ◀

▶ Theorem 6.8 (Strong Normalization (On page 12)). If Γ𝛾 ⊢ M : A, then M is strongly
normalizing with respect to ⇒𝛾

𝛽.

Proof. Given Γ ⊢ 𝑀 : 𝐴. Taking Γ ⊢ ∅ ∈ 𝒞⟦Γ⟧ yields Γ ⊢ 𝑀 ∈ ℰ⟦𝐴⟧ by Lemma D.15; thus
𝑀 ∈ SN by Lemma D.9. ◀

▶ Theorem 6.9 (Confluence (On page 12)). If Γ𝛾 ⊢ M1 : A, M1 ⇒𝛾
𝛽* M2 and M1 ⇒𝛾

𝛽* M3,
then there exists M4 such that M2 ⇒𝛾

𝛽* M4 and M3 ⇒𝛾
𝛽* M4.

Proof. From Newman’s lemma [31] and Theorem 6.8, we need only to prove weak confluence.
It is done by induction on 𝛽, which is straightforward because there are no critical pairs. ◀

▶ Lemma D.16. Suppose Γ ⊢ 𝑀 : 𝐴. If 𝑀 is 𝛽-normal and neutral, then there exists some
𝑥 :𝛾 𝐵 ∈ Γ such that 𝐴 is a subformula of 𝐵.

Proof. By induction on derivation. For the last rule of the derivation, there are four
possibilities:

▷ Case (Var). Obvious.
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▷ Case (→-E). Assume

Γ ⊢ 𝑁 : 𝐵 → 𝐶 Γ ⊢ 𝑃 : 𝐵

Γ ⊢ 𝑁𝑃 : 𝐶

Since 𝑁𝑃 is 𝛽-normal, 𝑁 is 𝛽-normal and neutral. By the IH there exists some 𝑥 :𝛿 𝐷 ∈ Γ
such that 𝐵 → 𝐶 is a subformula of 𝐷. Then 𝐶 is also a subformula of 𝐷, hence 𝑥 :𝛿 𝐷 meets
the condition.

▷ Case (□-E). Assume

Γ, ◀𝛾 ⊢ 𝑁 : □⪰𝛾1𝐵 Γ ⊢ 𝛾1 ⪯ pos(Γ)

Γ ⊢ unq{𝛾 𝑁} : 𝐵

Since unq{𝛾 𝑁} is 𝛽-normal, 𝑁 is 𝛽-normal and neutral. By the IH there exists some
𝑥 :𝛿 𝐷 ∈ Γ, ◀𝛾 such that □⪰𝛾1𝐵 is a subformula of 𝐷. Then 𝐵 is also a subformula of 𝐷,
hence 𝑥 :𝛿 𝐷 meets the condition.

▷ Case (∀-E). Assume

Γ ⊢ 𝑁 : ∀𝛾2 :⪰ 𝛾1. 𝐵 Γ ⊢ 𝛾1 ⪯ 𝛾

Γ ⊢ 𝑁𝛾 : 𝐵[𝛾2 := 𝛾]

Since 𝑁𝛾 is 𝛽-normal, 𝑁 is 𝛽-normal and neutral. By the IH there exists some 𝑥 :𝛿 𝐷 ∈ Γ
such that ∀𝛾2 :⪰ 𝛾1. 𝐵 is a subformula of 𝐷. Then 𝐵[𝛾2 := 𝛾] is also a subformula of 𝐷,
hence 𝑥 :𝛿 𝐷 meets the condition. Notice that classifier renaming [𝛾2 := 𝛾] here is allowed in
the definition of subformula. ◀

▶ Theorem 6.12 (Canonicity (On page 12)). If a term is well-typed, closed regarding term
variable, and 𝛽-normal, then it is canonical.

Proof. If not canonical, by Lemma D.16 it contains a free variable, which contradicts the
assumption. ◀

▶ Theorem 6.13 (Subformula Property (On page 12)). Suppose Γ𝛾 ⊢ M : A. If M is normal
with respect to ⇒𝛾

𝛽, then any subterm of M satisfies at least one of the following:
1. Its type is a subformula of A;
2. Its type is a subformula of B for some x :𝛿 B ∈ Γ.

Proof. By induction on derivation. Since the term 𝑀 itself clearly satisfies (1), it suffices to
check condition for proper subterms.

▷ Case (Var). No proper subterm exists.

▷ Case (→-I). Assume

Γ, 𝑦 :𝛾 𝐵 ⊢ 𝑁 : 𝐶 𝛾 /∈ FC(𝐶)

Γ ⊢ 𝜆𝑦 :𝛾 𝐵. 𝑁 : 𝐵 → 𝐶

Since all proper subterms of 𝜆𝑦 :𝛾 𝐵. 𝑁 are a subterm of 𝑁 , by the IH there are three
possibilities for their types:

▷ Subcase (a). A subformula of 𝐶. Then it is also a subformula of 𝐵 → 𝐶, so (1) holds.
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▷ Subcase (b). A subformula of 𝐵. This is also the case (1).

▷ Subcase (c). A subformula of 𝐷 for some 𝑥 :𝛿 𝐷 ∈ Γ. Yields (2).

▷ Case (→-E). Assume

Γ ⊢ 𝑁 : 𝐵 → 𝐶 Γ ⊢ 𝑃 : 𝐵

Γ ⊢ 𝑁𝑃 : 𝐶

Then 𝑁 is 𝛽-normal and neutral, so applying Lemma D.16 to 𝑁 , we see that there exists
some 𝑥 :𝛿 𝐷 ∈ Γ such that 𝐵 → 𝐶 is a subformula of 𝐷. Together with the IH, we see that (2)
holds for any proper subterm of 𝑁𝑃 .

▷ Case (□-I). Follows from the IH.

▷ Case (□-E). Similar to the rule →-E.

▷ Case (∀-I). Follows from the IH.

▷ Case (∀-E). Similar to the rule →-E. ◀

E Full Definitions and Proofs for Section 7

E.1 Semantical Comparison
▶ Definition E.1. We define two functions |−| : ℒ! → ℒ□ and (−)⪰! : ℒ□ → ℒ! as follows:

|p| = p (p)⪰! = p
|A → B| = |A| → |B| (𝐴 → 𝐵)⪰! = (𝐴)⪰! → (𝐵)⪰!

|□⪰!A| = □|A| (□𝐴)⪰! = □⪰!(𝐴)⪰!

▶ Lemma 7.2 (Stabilization (On page 13)). Given a CS4-model 𝑀 = ⟨𝑊, ⪯, 𝑅, 𝑉 ⟩. Define
⊑ as (⪯ ; 𝑅). Then 𝑀* = ⟨𝑊, ⪯, ⊑, 𝑉 ⟩ is a stable CS4-model.

Proof. The transitivity of ⊑ follows from the left-persistency of 𝑅, and the stability follows
from reflexivity of 𝑅. ◀

▶ Lemma E.2. Given a CS4-model 𝑀 . For any 𝐴 ∈ ℒ□, the following are equivalent:
1. 𝑀, 𝑤 ⊨CS4 𝐴;
2. 𝑀*, 𝑤 ⊨CS4 𝐴.

Proof. By induction on 𝐴. Here we check the case 𝐴 ≡ □𝐵:

𝑀, 𝑤 ⊨CS4 □𝐵

⇐⇒ ∀𝑣 ⪰ 𝑤. ∀𝑢 ∈ 𝑅(𝑣).
(︀
𝑀, 𝑤 ⊨CS4 □𝐵

)︀
⇐⇒ ∀𝑣 ⪰ 𝑤. ∀𝑢 ⊒ 𝑣.

(︀
𝑀, 𝑤 ⊨CS4 □𝐵

)︀
(∗)

⇐⇒ ∀𝑣 ⪰ 𝑤. ∀𝑢 ⊒ 𝑣.
(︀
𝑀*, 𝑤 ⊨CS4 □𝐵

)︀
(by IH)

⇐⇒ 𝑀*, 𝑤 ⊨CS4 □𝐵

where the left-to-right direction of (∗) follows from reflexivity of ⪯, and the converse follows
from transitivity of ⪯. ◀

▶ Lemma 7.3 (Root-Extension (On page 13)). Given a stable CS4-model 𝑀 = ⟨𝑊, ⪯, ⊑, 𝑉 ⟩.
Define 𝑀! = ⟨𝑊!, ⪯!, ⊑!, 𝑉!⟩ as follows:
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𝑊! = 𝑊 ⨿ {!};
w ⪯! v ⇐⇒ w = ! or w ⪯ v;
w ⊑! v ⇐⇒ w = ! or w ⊑ v;
w ∈ 𝑉!(p) ⇐⇒ 𝑉 (p) = 𝑊 if w = !, and w ∈ 𝑉 (p) otherwise.

Then 𝑀! is a stable CS4-model with a root !, namely, a BML-structure.

Proof. Straightforward. ◀

▶ Lemma E.3. Given a stable CS4-model 𝑀 . For any 𝐴 ∈ ℒ□, the following are equivalent:
1. 𝑀, 𝑤 ⊨CS4 𝐴;
2. 𝑀! , 𝑤 ⊨CS4 𝐴.

Proof. By induction on 𝐴. ◀

▶ Lemma 7.4 (One-Point Model (On page 13)). Given a BML-structure 𝑀 . Define 𝑀* as

⟨{*}, {⟨*, *⟩}, {* ↦→ 𝑀}⟩.

Then 𝑀* is a BML-model.

Proof. Obvious. ◀

▶ Lemma E.4. Given a BML-structure 𝑀 . Define a *-assignment ! for the one-point
mode 𝑀* as ! ↦→ ! . Then, for any 𝐴 ∈ ℒ□, the following are equivalent:
1. 𝑀, 𝑤 ⊨CS4 𝐴;
2. 𝑀*, *, 𝑤 ⊩! 𝐴⪰ ! .

Proof. By induction on 𝐴. There are three cases:

▷ Case (𝐴 ≡ 𝛼).

𝑀, 𝑤 ⊨CS4 𝛼

⇐⇒ 𝑤 ∈ 𝑉 (𝛼)
⇐⇒ 𝑀*, *, 𝑤 ⊩! 𝛼⪰ !

▷ Case (𝐴 ≡ 𝐵 → 𝐶).

𝑀, 𝑤 ⊨CS4 𝐵 → 𝐶

⇐⇒ ∀𝑣 ⪰ 𝑤.
(︀
𝑀, 𝑣 ⊨CS4 𝐵 =⇒ 𝑀, 𝑣 ⊨CS4 𝐶

)︀
⇐⇒ ∀𝑣 ⪰ 𝑤.

(︀
𝑀*, *, 𝑣 ⊩! 𝐵⪰ ! =⇒ 𝑀*, *, 𝑣 ⊩! 𝐶⪰ !)︀ (by IH)

⇐⇒ 𝑀*, *, 𝑤 ⊩! (𝐵 → 𝐶)⪰ !

▷ Case (𝐴 ≡ □𝐵).

𝑀, 𝑤 ⊨CS4 □𝐵

⇐⇒ ∀𝑣 ⪰ 𝑤. ∀𝑢 ⊒ 𝑣.
(︀
𝑀, 𝑢 ⊨CS4 𝐵

)︀
⇐⇒ ∀𝑢 ⊒ 𝑤.

(︀
𝑀, 𝑢 ⊨CS4 𝐵

)︀
(⊑ is stable)

⇐⇒ ∀𝑢 ⊒ 𝑤.
(︀
𝑀*, *, 𝑢 ⊩! 𝐵⪰ !)︀ (by IH)

⇐⇒ 𝑀*, *, 𝑤 ⊩! □⪰ !𝐵⪰ ! ◀

▶ Theorem 7.5 (On page 13). Given a CS4-model 𝑀 = ⟨𝑊, ⪯, 𝑅, 𝑉 ⟩. Define 𝔐 as (𝑀*)!*
and a *-assignment ! for 𝔐 as ! ↦→ !. Then 𝔐 is a BML-model, and for any 𝐴 ∈ ℒ□, the
following are equivalent:
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𝑀, w ⊨CS4 𝐴;
𝔐, *, w ⊩! (𝐴)⪰!.

Proof. It follows that 𝔐 is a BML-model from Lemmas 7.2–7.4, and for any 𝐴 ∈ ℒ□, we
have

𝑀, 𝑤 ⊨CS4 𝐴

⇐⇒ 𝑀*, 𝑤 ⊨CS4 𝐴 (by Lemma E.2)
⇐⇒ (𝑀*)! , 𝑤 ⊨CS4 𝐴 (by Lemma E.3)
⇐⇒ 𝔐, *, 𝑤 ⊩! 𝐴⪰ ! (by Lemma E.4)

◀

E.2 Flattening
▶ Lemma 7.7 (On page 14). 𝔐+ is a CS4-model.

Proof. Most of the conditions are straightforward. The transitivity of ⪯+ follows from that
of ⪯𝑢: if ⟨𝑤, 𝑑⟩ ⪯+ ⟨𝑣, 𝑒⟩ and ⟨𝑣, 𝑒⟩ ⪯+ ⟨𝑢, 𝑓⟩, then ⟨𝑤, 𝑑⟩ ⪯+ ⟨𝑢, 𝑓⟩:

e e f

d d d

⟨v, e⟩ ⟨u, f ⟩

⟨w, d⟩

𝑤 𝑣 𝑢

⪯ ⪯

⪯

⪯

≼

⊆

≼

⊆

⪯+

⪯+

⪯+

in 𝔐

in 𝔐+

1

Left-persistency follows from right-stability: if ⟨𝑤, 𝑑⟩ 𝑅+ ⟨𝑤, 𝑒⟩ ⪯+ ⟨𝑣, 𝑒′⟩, then ⟨𝑤, 𝑑⟩ ⪯+
⟨𝑣, 𝑑⟩ 𝑅+ ⟨𝑣, 𝑒′⟩:

e′

d e d e

⟨v, d⟩ ⟨v, e′⟩

⟨w, d⟩ ⟨w, e⟩

𝑤 𝑣

⪯

⊑ ⊑

⊑

≼

⊆

𝑅+

⪯+

⪯+

𝑅+

in 𝔐

in 𝔐+

2 ◀

▶ Theorem 7.8 (On page 14). Given a BML-model 𝔐. For any A ∈ ℒ!, the following are
equivalent:

𝔐, w, d ⊩𝜌 A;
𝔐+, ⟨w, d⟩ ⊨CS4 |A|.
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Proof. By induction on 𝐴. There are three cases:

▷ Case (𝐴 ≡ 𝛼).

𝔐, 𝑤, 𝑑 ⊩𝜌 𝛼

⇐⇒ ∀𝑣 ≽ 𝑤. 𝑑 ∈ 𝑉𝑣(𝛼)
⇐⇒ 𝑑 ∈ 𝑉𝑤(𝛼) (𝑉𝑤(𝛼) is increasing)
⇐⇒ ⟨𝑤, 𝑑⟩ ∈ 𝑉+(𝛼)
⇐⇒ 𝔐+, ⟨𝑤, 𝑑⟩ ⊨CS4 |𝛼|

▷ Case (𝐴 ≡ 𝐵 → 𝐶).

𝔐, 𝑤, 𝑑 ⊩𝜌 𝐵 → 𝐶

⇐⇒ ∀𝑣 ≽ 𝑤. ∀𝑒 ⪰𝑣 𝑑.

{︂
𝔐, 𝑣, 𝑒 ⊩𝜌 𝐵

=⇒ 𝔐, 𝑣, 𝑒 ⊩𝜌 𝐶

⇐⇒ ∀𝑣 ≽ 𝑤. ∀𝑒 ⪰𝑣 𝑑.

{︃
𝔐+, ⟨𝑣, 𝑒⟩ ⊨CS4 |𝐵|

=⇒ 𝔐+, ⟨𝑣, 𝑒⟩ ⊨CS4 |𝐶| (IH)

⇐⇒ ∀⟨𝑣, 𝑒⟩ ⪰+ ⟨𝑤, 𝑑⟩.
{︃
𝔐+, ⟨𝑣, 𝑒⟩ ⊨CS4 |𝐵|

=⇒ 𝔐+, ⟨𝑣, 𝑒⟩ ⊨CS4 |𝐶|
⇐⇒ 𝔐+, ⟨𝑤, 𝑑⟩ ⊨CS4 |𝐵 → 𝐶|

▷ Case (𝐴 ≡ □⪰ !𝐵).

𝔐, 𝑤, 𝑑 ⊩𝜌 □⪰ !𝐵

⇐⇒ ∀𝑣 ≽ 𝑤. ∀𝑒 ⊒𝑣 𝑑. (𝔐, 𝑣, 𝑒 ⊩𝜌 𝐵)

⇐⇒ ∀𝑣 ≽ 𝑤. ∀𝑒 ⊒𝑣 𝑑.
(︁
𝔐+, ⟨𝑣, 𝑒⟩ ⊨CS4 |𝐵|

)︁
(IH)

⇐⇒ ∀⟨𝑣, 𝑑′⟩ ⪰+ ⟨𝑤, 𝑑⟩.

∀⟨𝑣, 𝑒⟩ ∈𝑅+ (⟨𝑣, 𝑑′⟩).
(︁
𝔐+, ⟨𝑣, 𝑒⟩ ⊨CS4 |𝐵|

)︁
(†)

⇐⇒ 𝔐+, ⟨𝑤, 𝑑⟩ ⊨CS4
⃒⃒
□⪰ !𝐵

⃒⃒
where the left-to-right direction of (†) follows from left-stability:

d ′ e

d d

⟨v, d ′⟩ ⟨v, e⟩

⟨w, d⟩

𝑤 𝑣

⪯

⊑

⊑

≼

⊆

⪯+

𝑅+

in 𝔐

in 𝔐+

3 ◀

▶ Theorem 7.9 (On page 14). The ℒ□-fragment of CS4 is isomorphic to the ℒ!-fragment of
BML up to logical equivalence.

Proof. Follows from Theorems 7.5 and 7.8, where |−| and (−)⪰ ! are the isomorphisms. ◀
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E.3 Proof-Theoretic Comparison
Davies and Pfenning [7] provided a modal lambda-calculus that corresponds to their Kripke-
style natural-deduction proof system. For convenience, we call it 𝜆□ in this paper. Figure 12
provides the definition of 𝜆□. By forgetting proof terms, we obtain natural-deduction proof
system.

Variables x, y
Types 𝐴, 𝐵 ::= p | 𝐴 → 𝐵 | □𝐴

Terms 𝑀, 𝑁 ::= x | 𝜆x𝐴. 𝑀 | 𝑀𝑁

| box {𝑀} | unboxk{𝑀}
Context Γ, Δ ::= 𝜀 | Γ, x : 𝐴

Context Stack Ψ ::= Γ | Ψ ; Γ

Var

x : 𝐴 ∈ Γ
Ψ ; Γ ⊢S4 x : 𝐴

→-I
Ψ ; Γ, x : 𝐴 ⊢S4 𝑀 : 𝐵

Γ ⊢S4 𝜆x𝐴. 𝑀 : 𝐴 → 𝐵

→-E
Γ ⊢S4 𝑀 : 𝐴 → 𝐵 Γ ⊢S4 𝑁 : 𝐴

Γ ⊢S4 𝑀𝑁 : 𝐵

□-I
Ψ ; 𝜀 ⊢S4 𝑀 : 𝐴

Ψ ⊢S4 box {𝑀} : □𝐴

□-E
Ψ ⊢S4 𝑀 : □𝐴

Ψ ; Δ1 ; · · · ; Δk ⊢S4 unboxk{𝑀} : 𝐴

Figure 12 Syntax and Typing Rules of 𝜆□

𝜆□ can be considered as restricted version of our lambda-calculus, where quoted code is
always closed. This means that a box type □𝐴 corresponds to a bounded modal type with an
initial classifier □⪰!A. The whole definition of the translation is provided in Figure 13.

The term translation (𝑀)⪰!
−→𝛾 carries a sequence of classifiers −→𝛾 , which represents positions

for each past stage. The context translation judgment Γ ⇝ Γ/−→𝛾 states that Γ can be
translated to Γ where positions of past states are −→𝛾 . We can prove this translation preserves
typeability.

▶ Lemma E.5. Γ ⊢ ! ⪯ 𝛾 and Γ ⊢ ! ⊑ 𝛾 hold as long as 𝛾 ∈ DomC(Γ).

Proof. By induction on the derivation of Γ ⊢ ! ⪯ 𝛾 and Γ ⊢ ! ⊑ 𝛾. ◀

Theorem 7.10 can be proved by translating 𝜆□ terms to terms of our lambda-calculus.
Namely, it is a corollary of the following theorem.

▶ Theorem E.6. If Ψ ⊢S4 𝑀 : 𝐴 and Ψ⇝ Γ/−→𝛾 , then Γ ⊢ (𝑀)⪰!
−→𝛾 : (𝐴)⪰! holds.

Proof. By induction on the derivation of Ψ ⊢S4 𝑀 : 𝐴. We demonstrate the case of □-E.
Case □-E: We have a derivation

Ψ ⊢S4 𝑀 ′ : □𝐴 □-E
Ψ ; Γ1 ; · · · ; Γk ⊢S4 unboxk{𝑀 ′} : 𝐴

Decomposing −→𝛾 to −→𝛾 ′, 𝛿0, . . . , 𝛿k, we derive Ψ ⇝ Δ, ◀𝛿0/−→𝛾 ′, 𝛿0 from Ψ ; Γ1 ; · · · ;
Γk ⇝ Δ/−→𝛾 ′, 𝛿0, . . . , 𝛿k. Then we can apply the induction hypothesis, and get Δ, ◀𝛿0 ⊢
(𝑀 ′)⪰!

−→𝛾 ′, 𝛿0
: □⪰!(𝐴)⪰!. We apply □-E to derive Δ ⊢ unq{𝛿0(𝑀 ′)⪰!

−→𝛾 ′, 𝛿0
} : (𝐴)⪰!, which is what

we want. ◀
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Terms (𝑀)⪰!
−→𝛾

(x)⪰!
−→𝛾 = x

(𝜆x𝐴. 𝑀)⪰!
−→𝛾 , 𝛿1

= 𝜆x :𝛿2 (𝐴)⪰!. (𝑀)⪰!
−→𝛾 , 𝛿2

where 𝛿2 is fresh
(𝑀𝑁)⪰!

−→𝛾 = (𝑀)⪰!
−→𝛾 (𝑁)⪰!

−→𝛾

(box {𝑀})⪰!
−→𝛾 = quo{𝛿:⪰!(𝑀)⪰!

−→𝛾 , 𝛿
} where 𝛿 is a fresh classifier

(unboxk{𝑀})⪰!
−→𝛾 , 𝛿0, ..., 𝛿k

= unq{𝛿0(𝑀)⪰!
−→𝛾 , 𝛿0

}

Contexts Ψ⇝ Γ/−→𝛾

𝜀⇝ 𝜀/!

Ψ ; Γ⇝ Γ/−→𝛾 , 𝛿1 𝛿2 is fresh
Ψ ; Γ, x : 𝐴⇝ Γ, x :𝛿2 (𝐴)⪰!/−→𝛾 , 𝛿2

Ψ⇝ Γ/−→𝛾 𝛿 is fresh
Ψ ; 𝜀⇝ Γ, ▶𝛿:⪰!/−→𝛾 , 𝛿

Ψ ; Δ1 ; · · · ; Δk ⇝ Γ/−→𝛾 , 𝛿0, . . . , 𝛿k

Ψ⇝ Γ, ◀𝛿0/−→𝛾 , 𝛿0

Figure 13 Translation from 𝜆□ to our lambda-calculus

▶ Theorem 7.10 (On page 14). If 𝜀 ⊢S4 𝐴, then 𝜀 ⊢ (𝐴)⪰!.

Proof. Direct result from Theorem E.6 ◀
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