
Bounded Modal Type Theory
Fine-Grained Scope-Safety in Modal Lambda-Calculus

Abstract—Modal lambda calculi provide theoretical foundations
for scope-safe multi-stage programming, rejecting programs using
resources from inaccessible stages. Meanwhile, there remain
practical staged programs that are yet to be reasoned by existing
proposals. Our Bounded Modal Type Theory (BMTT) fills this gap
by incorporating classifiers into S4 modal types. Classifiers, as
type-level objects representing variable scopes, enable fine-grained
reasoning about resource visibility.

We define sound and complete Kripke semantics for its
logical counterpart, providing a guideline for the syntactic well-
formedness of stages and scopes. We also prove confluence, strong
normalization, and canonicity for its reduction semantics. These
results demonstrate that BMTT would provide a theoretical
foundation for various areas beyond multi-stage computation.

Index Terms—modal logic, modal lambda calculus, Kripke
semantics, multi-stage programming

I. INTRODUCTION

The well-known Curry–Howard isomorphism [1], [2] points
out the correspondence between logic and programming lan-
guages. Programming language researchers have leveraged this
correspondence to find sophisticated foundations for advanced
type systems, validating them from logical perspectives. In this
context, modal lambda-calculi were developed in explorations
for computational interpretation of modal logic. Prior work
found out that we can interpret several variants of modal lambda-
calculi as type systems for effectful computation [3], guarded
recursion [4]–[6], multi-stage programming [7]–[11], distributed
computing [12] to name a few.

In this paper, we focus on applications to multi-stage
programming, explaining concepts in modal calculi through
concrete examples. Multi-Stage Programming (MSP) provides a
syntactic mechanism to construct code fragments as first-class
values that can be executed in later evaluation stages. In this
context, a modal type □A is interpreted as a type of a code
representation for an expression typed A.

The issue we want to resolve in this paper is that we do not
have modal lambda-calculus that is granular enough to
reason about cross-stage persistence in MSP. We start with
step-by-step explanations of key concepts in MSP and existing
research before detailing this problem.

One of the core concerns in typing staged programs is
scope-safety: as different stages do not always share variable
environments, we want to ensure that there will not be scoping
issues where invisible variables are accidentally used. We
show example programs in the style of MetaML [13], [14]
among other syntax proposed for MSP. We think its quasi-
quotation syntax provides concise and clear semantics, and in
fact influenced design of many staged programming languages,

such as MetaOCaml [15], [16], Scala 3 [17] and Template
Haskell [18].

The following function spower specializes a power function
by taking a number n and returns a code fragment of a function
that multiples its argument n times.

let rec spower_ n x =

if n == 0 then `{ 1 }

else `{ ~x * ~{ spower_ (n-1) x } } in
let spower n =

`{ fun y => ~{ spower_ n `{ y } } }

Here a quote `{M} produces a code representation of M
rather than evaluating it, and a splice ~{M} embeds a code
fragment from m into another quote. When we call spower 3,
it finally returns `{fun x => x * x * x * 1}. To use the
code fragment from spower 3, we can move the generated
program to the next stage or evaluate it at the current stage
using the run primitive, known as run-time evaluation. In
the following program, we perform run-time evaluation on
spower 3 to define power3.

let power3 = run (spower 3)

(* fun y => y * y * y * 1 *)

The key insight in MSP is that variables are available only
in the evaluation stage where they are defined. For example,
the following program results in an error because it attempts to
evaluates x, which is defined in a future stage.

`{ let x = 10 in ~{ spower x } }

In order to detect this sort of scoping errors, we need to care
about visibility of variables at each point of a given program.

As mentioned earlier, certain modal lambda-calculi can be
regarded as type systems that detect scoping errors in staged
programs. Well-known calculi are S4 modal lambda-calculus [7]
and λ⃝, a calculus that corresponds to Linear-time Temporal
logic (LTL) [8]. They provide different scoping disciplines,
which leads to the well-known characterizations: S4 modal
types represent closed/persistent code fragments while LTL
types represent open code fragments [19]. Here, persistent code
fragments are those that can safely undergo run-time evaluation.

However, their type systems are known to be too coarse
because we want to allow both openness and persistence [19].
This issue has motivated the exploration of novel modal
calculi with fine-grained reasoning about scope-safety. For
example, Taha et al. proposed a type system with environment
classifiers [20], which is later formalized as a modal lambda-
calculus λ▷ by Tsukada and Igarashi [9]. As another approach,
Nanevski et al. presented Contextual Modal Type Theory (CMTT)



that generalizes S4 modal types to represent open yet persistent
code fragments [10].

However, certain practical features for MSP remain unad-
dressed by existing modal lambda-calculi: now it is time to
explain the concept of Cross-Stage Persistence (CSP) [14], [15],
[21], [22]. Consider the following example.
let x = 10 in run `{ x + 10 }

Here, the variable x is defined at the current stage while
used in the quote, which appears to be ill-scoped. However,
run-time evaluation lifts the content of the quote to the current
stage, and the variable is resolved to its definition properly.
Hence, it is sometimes safe to use variables at (apparently)
future stages, which is called CSP. The essence of CSP is
that it requires a single code fragment to exibit both openness
and persistence. λ▷ does not satisfy this requirement: it allows
openness or persistence, not both. While CMTT seems to satisfy
this requirement, but it cannot directly represent CSP due to its
inherent nature; we will discuss this topic in Section VIII. In
this sense, further granular scoping disciplines are required to
type staged programs with CSP.

A. Our Contribution
To fill this gap, we present Bounded Modal Type Theory

(BMTT), a novel modal lambda-calculus that incorporates
classifiers into S4 modal types.

Classifiers are first-class objects in BMTT that represent
visible resources. They can also be interpreted as variable
environments or scopes. This idea is inspired from refined
environment classifiers by Kiselyov et al. [23], which we
compare in Section VIII.

With support of classifiers, BMTT maintains fine-grained
scope-safety using two types. A bounded modal type [⪰γA]
annotates a S4 modal type with the classifier γ, which specifies
the lower bound of resources for A to hold. A polymorphic
classifier type ∀γ1 :⪰ γ2.A provides a first-order bounded
polymorphism over classifiers, allowing flexible typing combined
with bounded modal types.

We devote Section II for providing the intuition of how BMTT
maintains scope-safety with classifiers. Section III provides
its type system and reduction semantics. Section IV explains
how BMTT encodes staged programs, including CSP, and
the current gap between BMTT and applicactions to MSP.
Section V defines a type-preserving embedding from λ⃝ into
BMTT, which implies the potential applications of BMTT to
practical languages with MetaML-style MSP.

At the same time, it should be emphasized that BMTT itself
is a pure modal lambda-calculus. Section VI considers a logical
counterpart of BMTT and defines sound and complete Kripke
semantics for it. In fact, our model for BMTT worked as a
guide for the syntactic design of BMTT, especially its judgment
structure. Furthermore, we investigate metatheory of BMTT
including strong normalization, confluence, canonicity and the
subformula property in Section VII. These results validate
BMTT from a logical perspective, and we expect that BMTT
would provide theoretical foundations for various areas beyond
MSP.

(a) ⊚ !

(b) let x:int@γ1 = 10 in
fun f:int->int@γ2 => ⊚

! γ1

x

γ2

f

(c) let x:int@γ1 = 10 in
fun f:int->int@γ2 =>

`{γ3:>! ⊚ }

! γ1 γ2

γ3

(d) let x:int@γ1 = 10 in
fun f:int->int@γ2 =>

`{γ3:>! ~{@γ2 ⊚ } }

! γ1 γ2

γ3

(e) let x:int@γ1 = 10 in
fun f:int->int@γ2 =>

`{γ3:>! ~{@γ2 λγ4:>γ3. ⊚ } }

! γ1 γ2

γ3 γ4

Fig. 1. Scoping and Staging Structure in BMTT, where and between
nodes indicates scope and stage transitions, respectively

Note that we omit many details and proofs which can be
find in Appendix.

II. BASIC INTUITION AND INFORMAL DESCRIPTIONS

This section is devoted to providing basic concepts of BMTT:
classifier, position, scope transition and modal transition.
Classifiers are represented by γ, δ, and can be regarded to
represent visible resources, variable environments or variable
scopes either. BMTT heavily uses classifiers to maintain
consistency of scopes and stages.

In BMTT, each part of a program is associated with a
corresponding classifier, representing visible resources at the
point. Given a specific part of a program, we refer to the
corresponding classifier as the position of the part. In Figure 1,
the left side provides partial programs with holes represented by
⊚. The right side visualizes how BMTT maintains classifiers,
where the node with double circle corresponds to the position
of the ⊚ in the left side.

(a) Here ⊚ is put toplevel. Its position is the initial classifier
!, a special classifier that represents empty resources. At this
point, only the initial classifier exists on the right side, where
double square indicates that it is the position of the hole.

(b) When we introduce new variables via let or fun in the
hole, new classifiers are introduced that represent resources
with the new variable in addition to the existing ones. In this
case, declarations for x and f carry new classifiers γ1 and γ2,
where x is visible at γ1 and x , f are visible at γ2. Here, you
can see on the right side that arrows are drawn between
classifiers, indicating the increase of resources. We call these
arrows scope transitions. We write γ ⪯ γ′ if there is an scope
transition between γ and γ′. Note that scope transitions are
reflexive and transitive while we omit derivable ones from the
visualization. We can also see that declaring a new variable
moves its position to the corresponding classifier; hence γ2 is
the new position in (b).



(c) Then we put a quote inside the hole, carrying a classifier
declaration γ3 :⪰ !. It introduces a new classifier γ3 with the
lower bound !, moving its position to γ3. Hence, γ3 represents
abstract resources that are larger than !. We see that there is a
scope transition between ! and γ3. This quote also moves the
stage of the hole, which is indicated by the modal transition
from γ2 to γ3. This transition is visualized by the waving arrow

on the right side, and we write γ2 ⊑ γ3 to mean this
modal transition. Modal transitions are reflexive and transitive,
and also satisfy γ ⪯ γ′ ⇒ γ ⊑ γ′. Therefore, any classifiers
that are reachable by and in the visualizations have
modal transitions.

(d) An unquote moves its position to somewhere in the past
stages. It carries an existing classifier that is reachable by modal
transition in backward direction. In this case, the unquote moves
its position to γ2 where we can confirm γ2 ⊑ γ3.

(e) BMTT provides classifier abstraction, which introduces
polymorphic classifiers. Here, a polymorhic classifier γ4 is
declared with the lower bound γ3. The point of classifier
abstraction is that it introduces a scope transition that is
independent from its position. As you can see on the right
side, a new scope transition is added from γ3 to γ4 without
moving its position γ2. We also have classifier application, but
we omit it in this section because it does not affect classifiers
and position.

As we have seen, BMTT keeps track of granular information
on classifiers, positions and scope/modal transitions. The
question for readers, then, is how we use it to ensure scope
safety. First, we state the well-scopedness principle, which
defines a scope-safe use of variables.

Principle 1 (Well-Scopedness). Supposing a variable x is
declared with γ1, a use of x is well-scoped if and only if its
position γ2 satisfies γ1 ⪯ γ2.

At any point, we know its position and the classifier of a
variable declaration of x ; hence, we can always check scope
transition to see whether x is visible from the current position.
We can lift this idea to general terms, which establishes an
expected property for BMTT.

Principle 2 (Monotonicity). If a term M is well-scoped at the
posision γ1 and γ1 ⪯ γ2 holds, then M is also well-scoped at
the position γ2.

As computation proceeds, a part of a program may move
to another place where it becomes ill-scoped. From this
view, monotonicity provides the condition on places into
which a program can move without scoping issues. The
reduction semantics of BMTT takes care of this principle, and
achieves static scope-safety guarantee. Therefore, we consider
monotonicity the fundamental property in BMTT, capturing the
essence of scope-safety.

If you are familiar with Kripke semantics for intuitionistic
modal logic, concepts in this section might remind you of
birelational Kripke semantics for intuitionistic variants of S4.
That is correct, but only partly. Later in Section VI, we present

our Kripke semantics for BMTT and demonstrate how scoping
disciplines in BMTT fits into our models.

III. FORMAL DEFINITIONS

Now we look into the formal definitions of BMTT, and prove
its basic properties based on the intuition provided in the last
section.

A. Syntax and Typing Rules

Typing disciplines in BMTT incorporate classifiers, positions,
scope transitions, and modal transitions. These notions are
incorporated into contexts.

Γ,∆ ::= ϵ | Γ,x :γA | Γ,🔓γ1:⪰γ2 | Γ,🔒γ | Γ,γ1 :⪰ γ2

ϵ represents an empty context. Variable declaration x :γA, open
lock 🔓γ1:⪰γ2 , closing lock 🔒γ , and polymorphic classifier
declaration γ1 :⪰ γ2 correspond to cases (b)–(e) in the last
section, respectively.

Contexts in BMTT are responsible for maintaining 1. declared
variables and classifiers 2. its position 3. transitions between
classifiers. For the first one, we sometimes regard a context
as a set of variable declarations, like x : γA ∈ Γ. DomC(Γ)
and DomV(Γ) stand for declared classifiers and variables in
Γ, respectively. We write Γ1,Γ2 for a context that appends Γ1

and Γ2.
For the second one, we define a function pos(Γ), which

returns the position of Γ.

pos(ϵ) = ! pos(Γ,x :γA) = γ pos(Γ,🔓γ1:⪰γ2) = γ1
pos(Γ,🔒γ) = γ pos(Γ,γ1 :⪰ γ2) = pos(Γ)

For the sake of space, we introduce a shorthand notation for
positions.

Notation 1. We write Γγ to represent Γ with its position γ.
When we write a context with multiple meta-variables like
Γγ1

1 ,Γγ2

2 , then it means that pos(Γ1) = γ1 and pos(Γ1,Γ2) =
γ2 hold. Note that it does not mean pos(Γ2) = γ2 because Γ2

can be empty.

For the third one, we have judgments for a scope transition
Γ ⊢ γ1 ⪯ γ2 and a modal transition Γ ⊢ γ1 ⊑ γ2. While we
omit their definitions, they are basically designed so that the
following lemma to hold. Note that judgments in BMTT require
⊢ Γ: ctx by definition, stating well-formedness of Γ, which is
defined later.

Lemma 1. Judgments below are derivable.
1) Γγ

1 ,x :
δA,Γ2 ⊢ γ ⪯ δ

2) Γγ1

1 ,🔓δ:⪰γ2 ,Γ2 ⊢ γ2 ⪯ δ
3) Γγ1

1 ,🔓δ:⪰γ2 ,Γ2 ⊢ γ2 ⊑ δ
4) Γγ1

1 ,🔓δ:⪰γ2 ,Γ2 ⊢ γ1 ⊑ δ
5) Γ1, δ :⪰ γ,Γ2 ⊢ γ ⪯ δ

Lemma 2. Statements below hold. (⊴=⪯ or ⊑)
1) γ ∈ DomC(Γ) =⇒ Γ ⊢ γ ⊴ γ.
2) Γ ⊢ γ1 ⊴ γ2 and Γ ⊢ γ2 ⊴ γ3 =⇒ Γ ⊢ γ1 ⊴ γ3.
3) Γ ⊢ γ1 ⪯ γ2 =⇒ Γ ⊢ γ1 ⊑ γ2.



x : γ1A ∈ Γγ2 Γγ2 ⊢ γ1 ⪯ γ2
Var

Γγ2 ⊢ x : A

Γ,x :γA1 ⊢ M : A2 γ1 ̸∈ FC(A2)
→-I

Γ ⊢ λx : γA1.M : A1 → A2

Γ ⊢ M1 : A1 → A2 Γ ⊢ M2 : A1→-E
Γ ⊢ M1 M2 : A2

Γ,🔓γ1:⪰γ2 ⊢ M : A γ1 ̸∈ FC(A)
[]-I

Γ ⊢ ‘{γ1:⪰γ2M } : [⪰γ2A]

Γγ1 ,🔒γ2 ⊢ M : [⪰γ3A] Γγ1 ⊢ γ3 ⪯ γ1
[]-E

Γγ1 ⊢ ~{γ2M } : A

Γ,γ1 :⪰ γ2 ⊢ M : A
∀-I

Γ ⊢ λγ1 :⪰ γ2.M : ∀γ1 :⪰ γ2.A

Γ ⊢ M : ∀γ1 :⪰ γ2.A Γ ⊢ γ2 ⪯ γ3∀-E
Γ ⊢ M γ3 : A[γ1:=γ3]

Fig. 2. Typing Rules

A judgment ⊢ Γ: ctx states well-formedness of Γ. The rule
WF-🔒 is worth mentioning, which ensures the context Γγ ,🔒δ to
satisfy Γγ ⊢ δ ⊑ γ. This condition corresponds to the behavior
of unquote, as explained in case (d) of the last section.

⊢ Γγ : ctx Γγ ⊢ δ ⊑ γ
WF-🔒

⊢ Γγ ,🔒δ : ctx

Other rules ensure that types and classifiers appear well-formed
and defined in the context. We omit their straightforward
definitions. Types and terms are defined in the syntax below.

Types A,B ::= p | A → B | [⪰γA] | ∀γ1 :⪰ γ2.A
Terms M ,N ::= x | λx : γA.M | M N | ‘{γ1:⪰γ2M }

| ~{γM } | λγ1 :⪰ γ2.M | M γ1

∀γ1 :⪰ γ2.A, ‘{γ1:⪰γ2M } and λγ1 :⪰ γ2.M binds γ1 in A
or M , respectively. λx : γA.M binds x and γ in M . FC(A)
and FC(M ) represent a set of free classifiers in A and M ,
respectively. FV(M ) represents a set of free variables in M . For
each binding form, we assume that binding classifiers/variables
can be renamed (Barendregt convention).

A judgment Γ ⊢ A : type states well-formedness of A,
ensuring free classifiers in A to be declared by Γ. Derivation
rules are straightforward and omitted. A typing judgment
Γ ⊢ M : A states that M has the type A under the context Γ
at the position of Γ. Typing rules are listed in Figure 2.

We look into each typing rule. Var uses a variable x from
Γ with the side condition Γγ2 ⊢ γ1 ⪯ γ2. This formalizes the
well-scopedness principle, ensuring that x is visible from the
current position.

→-I and →-E type a function λx : γA.M and an application
M N . They are almost the same as the common definition except
that a lambda abstraction carries a classifier declaration and
→-I has a side condition γ1 ̸∈ FC(A2) to avoid dependency.
It should be feasible to extend function types to dependent
classifier types like

∏
A1@γ A2, but we omitted it for simplicity.

[]-I introduces a bounded modal type [⪰γ2A] with a quote
‘{γ1:⪰γ2M } by discharging an open lock in a context. From
the MSP perspective, this bounded modal type indicates that
A holds for any classifier γ1 in a future stage of pos(Γ) with
more resources than γ2. []-E provides γ1 = pos(Γ) as the
classifier that satisfies this condition. From WF-🔒, we have
Γγ1 ⊢ γ2 ⊑ γ1 for the first condition, and the side condition
ensures the second condition Γγ1 ⊢ γ3 ⪯ γ1.

Rules for polymorphic classifier types are rather straight-
forward. ∀-I discharges polymorphic classifier declaration,

introducing polymorphic classifier type ∀γ1 :⪰ γ2.A with
a classifier abstraction λγ1 :⪰ γ2.M . On elimination, ∀-E
requires a given classifier γ3 to satisfy γ2 ⪯ γ3. The type
A[γ1:=γ3] denotes the type obtained by replacing γ1 occurring
in A with γ3.

B. Basic Properties

BMTT judgments have rich structural properties. First,
weakening holds for some of the judgments.

Theorem 1 (Weakening). Given ⊢ Γ,∆: ctx,
1) Γ ⊢ A : type ⇒ Γ,∆ ⊢ A : type.
2) Γ ⊢ γ1 ⊴ γ2 ⇒ Γ,∆ ⊢ γ1 ⊴ γ2. (⊴ = ⪯ or ⊑)

However, weakening does not hold for typing judgments
because typeability depends on a context’s position. In this
sense, a typing judgment pertains to local properties, whereas
others pertain to global properties. Instead, we state a formal-
ized version of the monotonicity principle. In the following
definition, ∆1#∆2 indicates that DomC(∆1), DomC(∆2),
DomV(∆1), and DomV(∆2) are disjoint.

Theorem 2 (Monotonicty). Given ∆1#∆2 and Γγ1 ,∆γ2

1 ⊢
γ1 ⪯ γ2, then the following statements hold:

1) ⊢ Γ,∆2 : ctx =⇒ ⊢ Γ,∆1,∆2 : ctx.
2) Γ,∆2 ⊢ A : type =⇒ Γ,∆1,∆2 ⊢ A : type.
3) Γ,∆2 ⊢ δ1 ⪯ δ2 =⇒ Γ,∆1,∆2 ⊢ δ1 ⪯ δ2.
4) Γ,∆2 ⊢ δ1 ⊑ δ2 =⇒ Γ,∆1,∆2 ⊢ δ1 ⊑ δ2.
5) Γ,∆2 ⊢ M : A =⇒ Γ,∆1,∆2 ⊢ M : A.

Corollary 1. If Γ1 ⊢ M : A and Γγ1

1 ,Γγ2

2 ⊢ γ1 ⪯ γ2, then
Γ1,Γ2 ⊢ M : A.

As described in Section II, monotonicity states the essential
property for scope-safety in BMTT. This theorem is used to
prove base cases of Lemma 3, where a subterm moves its
position without scoping errors.

We define meta-operations before stating other properties.
Classifier substitution ·[γ1:=γ2] operates on classifiers, contexts,
types, and terms, substituting free occurrences of γ1 with
γ2. Variable substitution ·[γ1:=γ2,x :=M ] operates on terms,
substituting free occurrences of γ1 and x with γ2 and M ,
respectively.

Lemma 3 (Variable Substitution). Let ∆1 = Γγ1

1 ,x :γ2A,Γ2,
and ∆2 = Γ1,Γ2[γ2:=γ1]. Then, the following statements hold.

1) ⊢ ∆1 : ctx =⇒ ⊢ ∆2 : ctx.
2) ∆1 ⊢ A : type =⇒ ∆2 ⊢ A[γ2:=γ1] : type.



3) ∆1 ⊢ δ1 ⪯ δ2 =⇒ ∆2 ⊢ δ1[γ2:=γ1] ⪯ δ2[γ2:=γ1].
4) ∆1 ⊢ δ1 ⊑ δ2 =⇒ ∆2 ⊢ δ1[γ2:=γ1] ⊑ δ2[γ2:=γ1].
5) ∆1 ⊢ M1 : B and Γ1 ⊢ M2 : A

=⇒ ∆2 ⊢ M1[γ2:=γ1,x :=M2] : B [γ2:=γ1].

Lemma 4 (Rebasing). Let ∆1 = (Γγ1

1 ,🔒γ2 ,🔓γ3:⪰γ4 ,Γ2), and
∆2 = Γ1,Γ2[γ3:=γ1]. Supposing Γ1 ⊢ γ4 ⪯ γ1, the following
statements hold,

1) ⊢ ∆1 : ctx =⇒ ⊢ ∆2 : ctx.
2) ∆1 ⊢ A : type =⇒ ∆2 ⊢ A[γ3:=γ1] : type.
3) ∆1 ⊢ δ1 ⪯ δ2 =⇒ ∆2 ⊢ δ1[γ3:=γ1] ⪯ δ2[γ3:=γ1].
4) ∆1 ⊢ δ1 ⊑ δ2 =⇒ ∆2 ⊢ δ1[γ3:=γ1] ⊑ δ2[γ3:=γ1].
5) ∆1 ⊢ M1 : A =⇒ ∆2 ⊢ M [γ3:=γ1] : A[γ3:=γ1].

Lemma 5 (Classifier Substitution). Let ∆1 = Γ1,γ1 :⪰ γ2,Γ2

and ∆2 = Γ1,Γ2[γ1:=γ3]. Given Γ1 ⊢ γ2 ⪯ γ3, then the
following statements hold.

1) ∆1 ⊢ A : type =⇒ ∆2 ⊢ A[γ1:=γ3] : type.
2) ⊢ ∆1 : ctx =⇒ ⊢ ∆2 : ctx.
3) ∆1 ⊢ δ1 ⪯ δ2 =⇒ ∆2 ⊢ δ1[γ1:=γ3] ⪯ δ2[γ1:=γ3].
4) ∆1 ⊢ δ1 ⊑ δ2 =⇒ ∆2 ⊢ δ1[γ1:=γ3] ⊑ δ2[γ1:=γ3].
5) ∆1 ⊢ M : A =⇒ ∆2 ⊢ M [γ1:=γ3] : A[γ1:=γ3].

C. Logical Harmony and Reduction Semantics

The introduction and elimination rules in BMTT are
well balanced with respect to local soundness and local
completeness [24]. For the sake of space, we skim local
soundness/completeness patterns in the following statements.

Lemma 6 (Local Soundness Patterns).
1) Γγ1 ⊢ (λx : γ2A.M ) N : B

=⇒ Γ ⊢ M [γ2:=γ1,x :=N ] : B .
2) Γγ1 ⊢ ~{γ2 ‘{γ3:⪰γ4M }} : A =⇒ Γ ⊢ M [γ3:=γ1] : A.
3) Γ ⊢ (λγ1 :⪰ γ2.M )γ3 : A =⇒ Γ ⊢ M [γ1:=γ3] : A.

Lemma 7 (Local Completeness Patterns). (δ is taken freshly)
1) Γ ⊢ M : A → B =⇒ Γ ⊢ λx : δA. (M x ) : A → B .
2) Γγ1 ⊢ M : [⪰γ2A] ⇒ Γ ⊢ ‘{δ:⪰γ2~{γ1M }} : [⪰γ2A].
3) Γ ⊢ M : ∀γ1 :⪰ γ2.A

=⇒ Γ ⊢ λδ :⪰ γ2. (M δ) : ∀γ1 :⪰ γ2.A.

Local soundness and completeness patterns can be regarded
as β-reduction and η-expansion, respectively. We define β-
reduction on raw terms, notated M1@γ ⇒β M2. Here the
classifier γ stands for the position of M1 and M2. As you can
see in the following definition, the position influences M2.

Definition 1 (β-reduction). M1@γ ⇒β M2 is defined to satisfy
following rules (along with compatibility rules).

(λx : γ2A.M ) N@γ1 ⇒β M [γ2:=γ1,x :=N ]

~{γ2 ‘{γ3:⪰γ4M }}@γ1 ⇒β M [γ3:=γ1]

(λγ2 :⪰ γ3.M )γ4@γ1 ⇒β M [γ2:=γ4]

Note that the compatibility rules need to maintain positions
for terms that move positions, the full definitions of which can
be find in Definition A.8. Also note that positions do not change
the computational behavior (such as strong normalization) of

β reduciton because classifier substitutions do not change the
structure of terms. Finally, we prove subject reduction.

Theorem 3 (Subject Reduction). If Γγ ⊢ M1 : A and
M1@γ ⇒β M2, then Γ ⊢ M2 : A.

D. Typing Examples

We show examples of typing judgments in Figure 3. K,
T, 4−1 and 4 are generalization of common modal axioms.
Mon and Mon−1 show that [⪰γA] and ∀γ′ :⪰ γ. [⪰γ′

A] are
equivalent, demonstrating monotonicity in bounded modal types.

Polymorphic classifiers are useful in the case like K−1* where
they abstract classifiers shared by multiple bounded modal
types. K−1* is one of such interesting examples, which lifts a
function on quotes to a quote of a function. Its type is similar
to the axiom K−1 (⚬A → ⚬B) → ⚬(A → B) for LTL, while
BMTT is based on S4 that lacks K−1. In fact, we can embed
λ⃝, a modal lambda calculus for linear-time temporal logic, to
BMTT as we demonstrate in Section V.

We demonstrate more examples of typing in BMTT for
staged programs in the next section.

IV. STAGED COMPUTATIONAL ACCOUNT OF BMTT
In this section, we briefly discuss how we can interpret staged

programs using BMTT, and the gap between BMTT to practical
applications.

As you have already seen, quotes in BMTT correspond to
quotes. Meanwhile, we can consider unquotes to represent
either splices or run-time evaluation, based on how many quotes
it jumps out: a splice gets out of surrounding quotes while run-
time evaluation stays at the same position. For types, a bounded
modal type [⪰γA] represents code fragments of expressions
typed A, under the variable environment bigger than γ.

We show how BMTT represents the spower example in
Section I. Here we assume extensions with recursive definitions,
integers and primitive operators, and we omit unnecessary
classifiers.

let rec spower_[δ1:>!](n:int)(x:[int@δ1])
:[int@δ1]@γ1 =

if n == 0 then `{@_:>δ1 1 }

else `{@δ2:>δ1
~{@γ1 x} * ~{@γ1 spower_[δ1] (n-1) x } } in

let spower(n:int):int->[int->int@!]@γ2 =

`{@δ3:>! fun y:int@δ4 =>

~{@γ1 spower_[δ4] n `{@_:>δ4 y } } } in
let power4:int->int@γ3 = ~{@γ1 spower 4 }

In this program, the spower_ function have the type
[δ1:>!](int->[int@δ1]->[int@δ1]) where a polymorphic
classifier is introduced by [δ1:>!]. We want to call this function
with `{@δ2 y } in the definition of spower, but δ2 is not
defined at the point of the definition of spower_. That is why
we use polymorphic classifiers to refer to classifiers that will
be defined later. Most of unquotes in this program behave
as splices, moving position to outside of surrounding quotes.
However, the one in power4 does not move its position and
behaves as run-time evaluation.



⊢ λγ :⪰ !. λx δ1 . λyδ2 . ‘{γ
′:⪰γ~{δ2x} ~{δ2y}} : ∀γ :⪰ !. [⪰γA → B ] → [⪰γA] → [⪰γB ] (K)

⊢ λxγ . ~{γx} : [⪰!A] → A (T)

⊢ λγ1 :⪰ !. λx δ. ‘{γ2:⪰γ1~{γ2~{δx}}} : ∀γ :⪰ !. [⪰γ [⪰γA]] → [⪰γA] (4−1)

⊢ λγ1 :⪰ !. λx δ1 . ‘{γ2:⪰γ1 ‘{γ3:⪰γ1~{δ1x}}} : ∀γ :⪰ !. [⪰γA] → [⪰γ [⪰γA]] (4)

⊢ λγ1 :⪰ !. λx δ. λγ2 :⪰ γ1. ‘{γ3:⪰γ2~{δx}} : ∀γ1 :⪰ !. ([⪰γ1A] → ∀γ2 :⪰ γ1. [
⪰γ2A]) (Mon)

⊢ λγ1 :⪰ !. λx δ. ‘{γ3:⪰γ1~{δxγ3}} : ∀γ1 :⪰ !. ((∀γ2 :⪰ γ1. [
⪰γ2A]) → [⪰γ1A]) (Mon−1)

where γ2 ̸∈ FC(A)

⊢ λγ1 :⪰ !. λx δ. ‘{γ3:⪰γ1λyγ4 . ~{δxγ4 ‘{γ5:⪰γ4y}}} : ∀γ1 :⪰ !. (∀γ2 :⪰ γ1. [
⪰γ2A] → [⪰γ2B ]) → [⪰γ1A → B ] (K−1*)

where γ2 ̸∈ FC(A) ∪ FC(B)

Fig. 3. Typing Examples

BMTT cannot type the example with a scoping issue in
Section I as expected. In the program below, we want a classifier
for ? such that ? ⊑ γ5, γ5 ⪯ ?. Only γ5 satisfies this constraint,
but the unquote does not move its position, behaving as run-time
evaluation. Hence, we cannot type this unquote as a splice.

`{@γ4:>γ3 let x@γ5 = 10 in ~{@? spower x } }

The other example of run-time evaluation with CSP can be
represented as follows.

let x:int@γ1 = 10 in ~{@γ1 `{γ2:>γ1 x + 10 } }

The unquote here does not change its position γ1, interpreted
as run-time evaluation. Inside the quote, x can be used because
γ1 ⪯ γ2 holds, and the whole quote is typed [⪰γ1int]. This
program remains well-scoped after reducing unquote and quote.

let x:int@γ1 = 10 in x + 10

Note that an unquote can sometimes be interpreted as both
a splice and run-time evaluation, leading to ambiguity in the
meaning of BMTT terms. In this sense, BMTT is not something
that can be used for MSP as-is, while it can be amended by
providing proof terms for modal transitions.

Finally, we formalize type-safe residualization [21], indicating
adequacy as a type system for MSP (similar properties are
called binding-time correctness [8] or eliminability [7]). It
essentially states that if a well-typed code generator generates a
code fragment, then the content of the fragment can be typed
at the toplevel context, i.e., an empty context.

Theorem 4 (Type-Safe Residualization). If ϵ ⊢ M : [⪰!A] and
M is normal with regard to ⇒β , then M = ‘{γ:⪰!M ′} for
some M ′ and ϵ ⊢ M ′[γ:=!] : A is derivable.

V. EMBEDDING OTHER MODAL CALCULI

As we mentioned earlier, bounded modality in BMTT is
based on S4 Kripke/Fitch-style modal calculus [7], [25]–[27]. In
fact, we can translate them to BMTT, where □A is interpreted
as [⪰!A].

Theorem 5. There is a type-preserving translation from S4
Kripke-style modal lambda-calculus by Davies and Pfenning [7]
to BMTT.

The detailed definitions and proofs can be found in Ap-
pendix C1.

More non-trivial is the relation to linear-time temporal lambda-
calculus like λ⃝ by Davies [8], [28], and we focus on this topic.
We sketch the definition of λ⃝ in Figure 4. λ⃝ influences
design of many MetaML-style MSP languages. Therefore, we
care about embedding λ⃝ to BMTT, which implies potential
application of BMTT to practical type system for MSP.

x :k A◦ ∈ Γ◦

Γ◦ ⊢k x : A◦
Γ◦, x :k A◦ ⊢k M◦ : B◦

Γ◦ ⊢k λxA◦
.M◦ : A◦ → B◦

Γ◦ ⊢k M◦ : A◦ → B◦ Γ◦ ⊢k N◦ : A◦

Γ◦ ⊢k M◦ N◦ : B◦

Γ◦ ⊢k+1 M◦ : A◦

Γ◦ ⊢k next {M◦} : ⚬A◦
Γ◦ ⊢k M◦ : ⚬A◦

Γ◦ ⊢k+1 prev {M◦} : A◦

(λxA◦
.M◦

1) M
◦
2 ⇒β M◦

1[x :=M◦
2]

prev {next {M◦}} ⇒β M◦

Fig. 4. Typing and Reduction in λ⃝ (omit compatibility for β)

This section demonstrates that such a translation can indeed
be implemented. Our translation from λ⃝ basically adopts the
idea of Murase et al., where they provide a type-preserving
translation from two-level variant of λ⃝ to their calculus [11].
Furthermore, our translation supports translating the full λ⃝
with multi-levels, and we prove that it does not only preserves
typeability, but also preserves to reduction semantics to some
extent.

In essence, typing judgments of λ⃝ manage the position for
each stage simultaneously. Our translation enables BMTT to
emulate this behavior, which is defined in Figure 5. Note that
we write k+ and k− as shorthands for k + 1 and k − 1.

Our translation carries three data: current level k , upper-
bound level l and mapping between levels and classifiers. This
mapping between levels and classifier (or, simply mapping)
γ0 . . . γl is a sequence of l +1 classifiers, which maps a level n
and corresponding classifier γn . This mapping encodes positions
for each stage maintained by λ⃝. Given a mapping −→γ , we
write −→γ [k ↦→ δ] to denote a new mapping that updates k th
element of −→γ with δ.



Type ⦇A◦⦈γk+...γl

@k≤l , ((A◦))
γk+...γl

@k≤l

⦇p⦈
−→γ
@k≤l =p

⦇A◦ → B◦⦈
−→γ
@k≤l =((A◦))

−→γ
@k≤l → ⦇B◦⦈

−→γ
@k≤l

⦇⚬A◦⦈γk+...γl

@k≤l =[⪰γk+⦇A◦⦈γk+2...γl

@k+≤l ] if k < l

((A◦))
γk+...γl

@k≤l =∀δk+≥γk+
. . . ∀δl≥γl

⦇A◦⦈δk+...δl
@k≤l

Term ⦇M◦⦈γ0...γl

@k≤l , ((M◦))γ0...γl

@k≤l

⦇x ⦈γ0...γl

@k≤l = xγk+ . . . γl

⦇λxA◦
.M◦⦈γ0...γl

@k≤l = λx : δ((A◦))
γk+...γl

@k≤l . ⦇M◦⦈(γ0...γl )[k ↦→δ]
@k≤l

⦇M◦ N◦⦈γ0...γl

@k≤l = ⦇M◦⦈γ0...γl

@k≤l ((N◦))γ0...γl

@k≤l

⦇next {M◦}⦈γ0...γl

@k≤l = ‘{δ:⪰γk+⦇M◦⦈(γ0...γl )[k+↦→δ]
@k+≤l } if k < l

⦇prev {M◦}⦈γ0...γl

@k≤l = ~{γk−⦇M◦⦈γ0...γl

@k−≤l} if k > 0

((N◦))γ0...γl

@k≤l = λδk+≥ γk+ . . . λδl≥ γl . ⦇N◦⦈γ0...γk ,δk+...δl
@k≤l

Context Γ◦@k ⇝≤l ∆/γ0 . . . γl

⇝-ϵ
ϵ@0⇝≤l ϵ/

−→
!

Γ◦@k ⇝≤l ∆/−→γ k > 0
⇝-🔒

Γ◦@k−⇝≤l ∆,🔒γk−/−→γ
Γ◦@k ⇝≤l ∆/γ0 . . . γl

⇝-V
Γ◦, x :k A◦@k ⇝≤l ∆,x :δ⦇A◦⦈γk+...γl

@k≤l /(γ0 . . . γl)[k ↦→ δ]

Γ◦@k ⇝≤l ∆/γ0 . . . γl k < l
⇝-🔓

Γ◦@k+⇝≤l ∆,🔓δ:⪰γk+/(γ0 . . . γl)[k+ ↦→ δ]

Γ◦@k ⇝≤l ∆/γ0 . . . γl
⇝-M

Γ◦@k ⇝≤l ∆, δk+:⪰ γk+ . . . δl :⪰ γl/γ0 . . . γk , δk+ . . . δl

Fig. 5. Translation from λ⃝ to BMTT (classifiers named δ or δk are taken freshly)

The basic idea of the translation is that annotating λ⃝ objects
with classifiers based on a given mapping. The translation for
bounded modal types, quotes and unquotes annotate appropriate
classifiers using the mapping.

However, this approach alone is not sufficient to define a
sound translation. For example, consider the following λ⃝
term.

λx⚬A
◦
. next {λyB◦

. prev {x}}

When translating the type ⚬A◦, the translation infers its classifier
from the position of the next stage. However, such classifiers
are different between when x is defined and when x is used,
leading to inconsistency in the translation results. That is why
we introduce polymorphic classifiers to address this gap, as
shown in the definitions of ((A◦))

γk+...γl

@k≤l , ((M◦))γ0...γl

@k≤l and⇝-M.
These polymorphic classifiers are instantiated when a variable is
used, applying classifiers at the point. In this sense, polymorphic
classifiers play an essential role in this translation. We can
confirm that it preserves typing.

Theorem 6. If Γ◦ ⊢k M◦ : A◦ holds in λ⃝, Γ◦@k ⇝≤l

∆/γ0 . . . γl holds and l is sufficiently large, then ∆ ⊢
⦇M◦⦈γ0...γl

@k≤l : ⦇A◦⦈γk+1...γl

@k≤l holds in BMTT.

In the rest of this section, we assume that l is sufficiently large
to ensure that translation is defined. We further demonstrate
that this translation is preserves reduction to some extent. We
define a forgetful translation from BMTT to λ⃝.

|p| = p

|A → B | = |A| → |B |
|[⪰γA]| = ⚬|A|

|x | = x

|λx : γA.M | = λx |A|. |M |
|M N | = |M | |N |

|‘{γ1:⪰γ2M }| = next {|M |}
|~{γM }| = prev {|M |}

We can confirm that the original λ⃝ term is restored by
forgetting classifiers annotated by the translation.

Lemma 8. If Γ◦ ⊢k M◦ : A◦ and Γ◦@k ⇝≤l ∆/γ0 . . . γl ,
then |⦇M◦⦈γ0...γl

@k≤l | = M◦ and |⦇A◦⦈γk+...γl

@k≤l | = A◦.

We define reduction ignoring classifiers, denoted as ⇛∗
β , for

BMTT terms. Then we prove that our translation is faithful to
this reduction.

Definition 2. We write M1 ⇛∗
β M2 iff there exists M3 such

that M1@γ ⇒∗
β M3 and |M3| = |M2| for any γ.

Theorem 7. Suppose Γ◦ ⊢k M◦
1 : A◦ and Γ◦@k ⇝≤l ∆/−→γ

hold. If M◦
1 ⇒β M◦

2, then ⦇M◦
1⦈

−→γ
@k≤l ⇛

∗
β ⦇M◦

2⦈
γ0...γl

@k≤l .

Through these properties on the two translation ⦇·⦈ and |·|,
we can regard BMTT as a granular calculus than λ⃝. In other
words, BMTT can type strictly a larger number of staged
programs than λ⃝ by annotating classifiers. Therefore, results
in this section support the capability of BMTT for MetaML-style
MSP along with the discussions in Section IV.

VI. THE CORRESPONDING LOGIC AND
ITS KRIPKE SEMANTICS

From the viewpoint of the Curry–Howard correspondence,
BMTT can be regarded as a natural-deduction proof system for
a kind of modal logic over intuitionistic logic. In this section,
we consider this logic and provide a sound and complete Kripke
semantics. In addition, we give a characterization in BMTT
of modal logic S4, which is the logical background of the
translation from S4 modal λ-calculus mentioned in Section V.

Hereafter, we omit terms from judgments unless necessary,
and types may also be referred to as formula.

Definition 3. The logic BMTT is defined to be
{
A
|| ε ⊢ A

}
,

the set of all formulae that can be proved without assumptions.

A. Logical Preliminaries

Since de Morgan’s laws are not necessarily assumed in the
intuitionistic setting, various counterparts for a single modal
logic from the classical setting can be considered, depending



on the axioms adopted. There are currently two main streams:
constructive modal logic (e.g., [29], [30]) and intuitionistic
modal logic (e.g., [31]–[33]). Several studies (e.g., [30], [34],
[35]) have shown that constructive modal logics are more
suitable for applications in computer science. For detailed
background and examples, see, e.g., Mendler and Scheele [36].

Birelational Kripke models have been widely studied as a
semantic foundation for both constructive and intuitionistic
modal logics. Alechina et al. [37] introduced a birelational
model for CS4, a constructive variant of modal logic S4:

Definition 4 (CS4-model [37]). A CS4-model1 is a quadruple
⟨W,⪯, R, V ⟩, where

• ⟨W,⪯⟩ is a nonempty preordered set,
• R is a preorder on W with condition:

– Left-persistency: (R ;⪯) ⊆ (⪯ ;R), and
• V assigns each atom p to an upward-closed subset of W .

Here, a model ⟨W, ⪯, V ⟩ of intuitionistic logic and a
model ⟨W,R, V ⟩ of modal logic are combined together, with
the left-persistency condition ensuring the axiom 4 be valid.
It is known that several variants of S4 can also be captured
through additional constraints on the structure [33], [38].

At first glance, a CS4-model might appear suitable as a
model of BMTT, with scope and stage transitions (i.e., ⪯ and
⊑) interpreted as ⪯ and R, respectively. Unfortunately, this
naive interpretation fails to be sound due to the insufficient
interaction between the relations. BMTT admits the stability2

condition (⪯) ⊆ R, which reflects the intuition that stage
transitions are more restrictive than scope transitions, but is not
valid in the class of CS4-models.

Imposing this condition would, in turn, establish the duality
between ◻ and ⬦ [29], which yet again conflicts with the
computational interpretation intended for BMTT; such a rigid
connection is difficult to reconcile with a constructive perspective.
These issues suggest that birelational models does not provide
an intuitive description of the relationship between scopes and
stages and is therefore inappropriate for BMTT.

As for intuitionistic modal logics, there is another approach
to relational semantics pioneered by Ewald [40]; a predicate
Kripke model interprets modalities directly in a first-order
structure via the standard translation. Simpson [33] investigated
this semantics extensively, including its application to an
intuitionistic variant of S4:

Definition 5 ([33]). A predicate IS4-model is a quintuple⟨
W,≼, {Dw}w∈W , {Rw}w∈W , {Vw}w∈W

⟩
, where

• ⟨W,≼⟩ is a nonempty preordered set;
• Each ⟨Dw, Rw, Vw⟩ is an S4-model; and
• If w ≼ v, then Dw ⊆ Dv , Rw ⊆ Rv , and Vw(p) ⊆ Vv(p)

for each atom p.

This approach is not applicable to constructive modal logics,
which are incompatible with the standard translation, nor is it

1For simplicity, we omit fallible worlds from the definition because ⊥ is not
considered in this paper, but our model can be extended to having them as well.

2The term “stable” is borrowed from Stell, Schmidt, and Rydeheard [39].

suitable for BMTT, as it does not cope with bounded modalities.
Nevertheless, the predicate semantics provides an important
insight: intuitionistically, domain structure is not known a priori,
but is revealed progressively. This leads to our model structure
of BMTT.

B. Kripke Models

We now present our model. First, we introduce a BMTT-
structure based on a birelational model to represent the purely
syntactic structure of a program with scopes and stages:

Definition 6 (BMTT-structure). A BMTT-structure is a
CS4-model ⟨D,⪯,⊑, V ⟩ with

• a root ! ∈ D, the least element with respect to ⪯, and
• the stability condition (⪯) ⊆ (⊑), or equivalently:

– Left-stable: (⪯ ;⊑) ⊆ (⊑), and
– Right-stable: (⊑ ;⪯) ⊆ (⊑).

To capture the dynamics of syntactic structures, a BMTT-
model is defined as a family of BMTT-structures, organized
analogously to a predicate model:

Definition 7 (BMTT-model). A BMTT-model M is a
quadruple

⟨
W,≼, {Mw}w∈W , ι

⟩
, where

• ⟨W,≼⟩ is a nonempty preordered set;
• Each Mw is a BMTT-structure ⟨Dw,⪯w,⊑w, Vw, !w⟩;
• ι is a family of structure-preserving functions ιw≼v : Dw →

Dv for each w ≼ v such that3:
– For each w ∈ W , ιw≼w = idDw , and
– If w ≼ v ≼ u, then ιv≼u ◦ ιw≼v = ιw≼u.

To illustrate the intuition behind the model, consider Figure 6.
In the program shown in (a), as the compiler reads through
the code from top to bottom, the number of classifiers (i.e.,
environments) it manages increases due to variable declarations
and opening quotes. This process is captured as a sequence of
growing BMTT-structures, as depicted in (d). In addition to
such a static evolution, (meta)program evaluation causes these
structures to change dynamically; as the program is evaluated
to (b) and then to (c), the structure is folded as in (e) and (f),
reflecting the resolution of the declared classifiers.

In such a situation, relying on a single birelational model to
validate scope-safety is insufficient. For instance, the quoted
program x * x in (a) is eventually used at γ4 in (c), yet γ4 is
not known to the compiler at the time x * x is constructed;
that is, γ4 is not present in the second BMTT-structure of (d).
This demonstrates that ensuring scope-safety requires validating
not only for the environments currently known, but also for
all environments that may appear during compilation. The
BMTT-model addresses this issue by integrating ideas from
both birelational and predicate models, providing a semantic
foundation for reasoning about scope-safety.

3In other words, a BMTT-model is given by a functor from a small
nonempty thin category ⟨W,≼⟩ to the category consisting of all BMTT-
structures with structure-preserving functions. Note that a morphism here is
different from p-morphism or bounded morphism, commonly used notion of
Kripke-model homomorphism, and does not need to preserve satisfaction.



(a) The original code.

 let x@γ1 = 42 in
 let y@γ3 = `{γ2:>γ1 x * x } in
 ~{@γ3 `{γ4:>γ3 ~{@γ3 y } } }

(b) After substitution of y.

let x@γ1 = 42 in
~{@γ1 `{γ4:>γ1

~{@γ1 `{γ2:>γ1 x * x } } } }

(c) After splicing of x * x.

let x@γ1 = 42 in
~{@γ1 `{γ4:>γ1

x * x } }

y:=`{x*x} Splicing

(d) Transition in structure when viewing line by line from the top of (a).

! γ1

γ2

! γ1 γ3

γ2 γ4

! γ1 γ3

(e) As of (b).

γ2 γ4

! γ1

(f) As of (c).

γ4

! γ1

≼ ≼ ≼ ≼

γ3:=γ1 γ2:=γ4

Fig. 6. Example of structural transitions represented by a BMTT-model, where and in node indicates scope and stage transitions, respectively.

From a logical perspective, such variable domains align with
the intuitionistic setting; otherwise, it would result in a constant-
domain interpretation of quantification. In other words, BMTT
can be understood as a special kind of intuitionistic first-order
modal logic in which each domain is also intuitionistic. This
allows us to extend Simpson’s predicate semantics to cover
constructive modal logics, which shall be demonstrated in
Section VI-E.

C. Formal Interpretation

A w-assignment ρ is a partial map from the set of all
classifiers to Dw with ! ↦→ !w. Given a w-assignment ρ,
define v-assignment ιw≼v(ρ) for v ≽ w as γ ↦→ ιw≼v(ρ(γ)) if
ρ(γ) is defined, and undefined otherwise. For simplicity, we
assume that an assignment has sufficient domain of definition
for interpretation.

The satisfaction of a formula A at d ∈ Dw with ρ on w ∈ W
in M, written w, d ⊩ρ A, is defined as

w, d ⊩ρ A iff ∀v ≽ w.
(
v, ι(d) ⊨ι(ρ) A

)
,

where w, d ⊨ρ A is defined as follows:

w, d ⊨ρ p iff d ∈ Vw(p)

w, d ⊨ρ A→B iff ∀e ⪰w d.

{
w, e ⊩ρ A

=⇒ w, e ⊩ρ B

w, d ⊨ρ [⪰γA] iff ∀e ⊒w d.

{
e ⪰w ρ(γ)

=⇒ w, e ⊩ρ A

w, d ⊨ρ ∀γ2 :⪰ γ1. A iff ∀e ⪰w ρ(γ1).
(
w, d ⊩ρ · [γ2 ↦→e] A

)
The relation w, d ⊨ρ A only considers the local structure
on w, which is insufficient for the monotonicity requirement
regarding ≼, so that w, d ⊩ρ A checks for all ≼-successors
of w to satisfy A.

Unlike satisfaction of a formula, the accesibiity of each
transition relation is independent of d and is interpreted as

w ⊩ρ γ1 ⊴ γ2 iff ρ(γ1) ⊴ ρ(γ2). (⊴ ∈ {⪯,⊑})

Finally, the interpretation of a context Γ is determined based
on its position pos(Γ) as follows:

w ⊩ρ ε iff always

w ⊩ρ Γ,x :γA iff


• w ⊩ρ Γ,
• w ⊩ρ pos(Γ) ⪯ γ, and
• w, ρ(γ) ⊩ρ A

w ⊩ρ Γ,🔓γ2:⪰γ1 iff


• w ⊩ρ Γ,
• w ⊩ρ pos(Γ) ⊑ γ2, and
• w ⊩ρ γ1 ⪯ γ2

w ⊩ρ Γ,🔒γ iff w ⊩ρ Γ

w ⊩ρ Γ,γ2 :⪰ γ1 iff
{

• w ⊩ρ Γ and
• w ⊩ρ γ1 ⪯ γ2

Notice that 🔒γ is not placing new assumptions here, but only
serves to shift position back to γ. This is actually sufficient
because the stage transition γ ⊑ pos(Γ) is required in the
formation rule WF-🔒 to be a consequence of Γ.

The following lemma is a semantical basis of scope-safety:

Lemma 9 (Monotonicity). Suppose w ≼ v and ι(d) ⪯v e.
1) If w, d ⊩ρ A, then v, e ⊩ι(ρ) A.
2) If w ⊩ρ γ1 ⪯ γ2, then v ⊩ι(ρ) γ1 ⪯ γ2.
3) If w ⊩ρ γ1 ⊑ γ2, then v ⊩ι(ρ) γ1 ⊑ γ2.

Proof. (2) and (3) follows from the monotonicity of ι. (1) is
shown by induction on A, where the case A ≡ [⪰γB] follows
from the left-stability of ⊑.

The semantic consequence relations are defined accordingly:

Γ ⊩ A iff ∀M, w, ρ.

{
M, w ⊩ρ Γ =⇒
M, w, ρ(pos(Γ)) ⊩ρ A

Γ ⊩ γ1 ⊴ γ2 iff ∀M, w, ρ.

{
M, w ⊩ρ Γ =⇒
M, w ⊩ρ γ1 ⊴ γ2

where ⊴ ∈ {⪯,⊑}. The soundness is now shown:

Theorem 8 (Kripke soundness).
1) If Γ ⊢ A, then Γ ⊩ A.
2) If Γ ⊢ γ1 ⪯ γ2, then Γ ⊩ γ1 ⪯ γ2.
3) If Γ ⊢ γ1 ⊑ γ2, then Γ ⊩ γ1 ⊑ γ2.

Proof. By induction on derivation, along with Lemma 9.

D. Kripke Completeness

To prove completeness we use a canonical-model construction.



In semantics, the truth of a formula is always defined at
each point of a model, whereas in syntax, only its validity
at pos(Γ) is assertible under Γ; in this respect, BMTT differs
from ordinary labeled proof systems (cf. e.g., [33], [41]). The
restriction, however, does not pose a problem, as Γ,🔒! ⊢ [⪰γA]
can be used instead to represent the validity of A at γ under Γ.
Here, the bounded modality expresses monotonicity, analogous
to the S4 modality in the Gödel–McKinsey–Tarski translation.

Definition 8 (Canonical model). Mc is defined as follows:
• W c is the set of all well-formed contexts.
• Γ ≼c ∆ iff ∃Γ′.

(
∆ ≡ Γ,Γ′).

• M c
Γ = ⟨Dc

Γ,⪯c
Γ,⊑c

Γ, V
c
Γ , !

c
Γ⟩ where

– Dc
Γ = DomC(Γ) with !cΓ = ! ;

– γ1 ⪯c
Γ γ2 iff Γ ⊢ γ1 ⪯ γ2;

– γ1 ⊑c
Γ γ2 iff Γ ⊢ γ1 ⊑ γ2;

– γ ∈ V c
Γ (p) iff Γ,🔒! ⊢ [⪰γ p].

• ιΓ≼∆ : Dc
Γ ↪→ Dc

∆ is the canonical injection.

Lemma 10. Mc is a BMTT-model.

Proof. Most of the conditions are straightforward. Transitivity
and stability are from Lemma 2.

The canonical model clarifies what inner and outer structures
represent: each Mw models the structure formed by classifiers,
whereas M models the structure formed by contexts.

The canonical Γ-assignment ρcΓ is an assignment that maps
each γ ∈ DomC(Γ) to itself, and we write Γ, γ ⊩c A if
Mc,Γ, γ ⊩ρc

Γ A. The truth lemma is stated in the following
form:

Lemma 11 (Truth lemma). Γ, γ ⊩c A iff Γ,🔒! ⊢ [⪰γA].

Proof. By induction on the size of A.

Theorem 9 (Kripke completeness).
1) If Γ ⊩ A, then Γ ⊢ A.
2) If Γ ⊩ γ1 ⪯ γ2, then Γ ⊢ γ1 ⪯ γ2.
3) If Γ ⊩ γ1 ⊑ γ2, then Γ ⊢ γ1 ⊑ γ2.

Proof. Shown by contrapositive, where we can take the
canonical model as countermodel by Lemma 11.

We remark that the canonical model has just increasing
domains, and thus ≼c represents only static evolution of the
structure, like those in Figure 6(d). The dynamic transition in
structure captured by a model shall be discussed in Section VII.

E. Comparison With CS4

Now we present a formal relationship between BMTT and
CS4 to confirm that BMTT is a generalization of CS4. To
align with the syntax of CS4, we restrict BMTT-formulae in
this subsection as the following grammar:

A,B ::= p | A→B | [⪰!A].

We define |A|◻ as the formula in which every [⪰!−] in A is
replaced with a ◻, turning it into a CS4-formula.

As already described, the naive interpretation of BMTT in
a CS4-model is not sound due to the lack of the stability

condition (⪯) ⊆ R. However, the following lemma suggests a
correct way of interpretation:

Lemma 12. Given a CS4-model M = ⟨W,⪯, R, V ⟩. Define
⊑ as (⪯;R). Then M∗ = ⟨W,⪯,⊑, V ⟩ is a stable CS4-model.

Proof. The transitivity of ⊑ follows from the left-persistency
of R, and the stability follows from the reflexivity of R.

The submodel Mw of M generated by w ∈ W is given
by restricting W to {v ∈ W | v ⪰ w}, so that w serves as
the root of Mw, making ⟨{∗},=, {Mw

∗ }, {idW }⟩ a one-point
BMTT-model, which also is referred to as Mw

∗ .

Lemma 13. Mw, v ⊨CS4 |A|◻ iff Mw
∗ , ∗, v ⊩[! ↦→w] A.

Proof. By induction on A.

Conversely, we construct a CS4-model from a BMTT-
model by flattening:

Definition 9 (Flattening). Let M = ⟨W,≼, {Mw}w∈W , ι⟩ be
a BMTT-model, with each Mw as ⟨Dw,⪯w,⊑w, Vw, !w⟩.
Then M+ =

⟨
W+,⪯+, R+, V+

⟩
is defined as follows:

• W+ =
∑

w∈W Dw;
• ⟨w, d⟩ ⪯+ ⟨w′, d′⟩ iff w ≼ w′ & ι(d) ⪯w′ d′;
• ⟨w, d⟩ R+ ⟨w′, d′⟩ iff w = w′ & d ⊑w d′; and
• ⟨w, d⟩ ∈ V+(p) iff d ∈ Vw(p).

Lemma 14. M+ is a CS4-model.

Proof. Left-persistency follows from the right-stability of ⊑w.
Note that stability does not preserved under flattening due to
the outer intuitionistic transition ≼.

Lemma 15. M, w, d ⊩ρ A iff M+, ⟨w, d⟩ ⊨CS4 |A|◻.

Proof. By induction on A.

These lemmas indicate that the two constructions, namely
Mw

∗ and M+, are pseudo-inverse operations that preserve
satisfaction, leading to the following characterization:

Theorem 10. The {→,◻}-fragment of CS4 is isomorphic to
the {→, [⪰!−]}-fragment of BMTT.

Proof. Follows from Lemmas 13 and 15, where |−|◻ is the
isomorphism.

Flattening offers another perspective on a BMTT-model:
M “stratifies” the CS4-model M+ into the stable compo-
nents {Mw}w∈W by decoupling its dynamic aspects from
the object structure. While such stratification is necessary to
determine the range of quantification, it does not always exist
for every CS4-model, which provides another reason why a
CS4-model is not suitable for BMTT.

VII. METATHEORY

In this section, we show basic properties of BMTT: strong
normalization, confluence, canonicity, and the subformula
property. These properties ensure the computational adequacy
of BMTT, as already stated in the form of Theorem 4.



A. Strong Normalization

Here, we define reducibility based on the Kripke semantics
to demonstrate the dynamic aspects captured by our model,
such as those shown in Figures 6(e) and 6(f).

To define reduciblity, we adopt the idea of using continuations
from Lindley [42]. A continuation K is a term context defined
by the following grammar:

K ::= [−]
|| K[[−]N ]

|| K[~{γ [−]}]
|| K[[−]γ].

Figure 7 defines the predicates E⟦A⟧ for terms and K⟦A⟧ for
continuations, simultaneously inductively on A. To provide a
proper computational interpretation, each predicate is indexed
by a context Γ, which is particularly crucial in BMTT because:
1) the reduction is a position-aware relation; and 2) 🔒’s cannot
be removed from a context by abstraction.

The preorder ≼ generalizes the canonical relation ≼c from
Definition 8 while taking the position pos(Γ) into account
to ensure typeability. To accommodate monotonicity, Γ ⊢
M ∈ E⟦A⟧ verifies the SN-ability of M with all reducible
continuations K under all ≼-successor contexts ∆ of Γ, whereas
Γ ⊢ K ∈ K⟦A⟧ is just validated locally within Γ.

Lemma 16. If Γ ⊢ M ∈ E⟦A⟧, then M ∈ SN.

Proof. If E-id is applied, then obvious; otherwise follows from
Γ ⊢ [−] ∈ K⟦A⟧ by K-id.

Next, we consider the interpretation of a context. A simulta-
neous substitution σ is defined by the following grammar:

σ ::= ∅ | σ · [γ := γ′,x := M ] | σ · [γ := γ′],

where the symbol ∅ denotes an empty substitution that does not
replace any variable or classifier. Figure 7 gives the definition
of a reducible substitution ∆ ⊢ σ ∈ C⟦Γ⟧, whereby variables
and classifiers declared in Γ are instantiated under ∆.

Lemma 17 (Fundamental property). Suppose Γ ⊢ M : A. If
∆ ⊢ σ ∈ C⟦Γ⟧, then ∆ ⊢ M σ ∈ E⟦Aσ⟧.

Proof. By induction on the derivation of Γ ⊢ M : A.

Theorem 11 (Strong normalization). A well-typed term is
strongly normalizing with respect to β-reduction.

Proof. Given Γ ⊢ M : A. Taking Γ ⊢ ∅ ∈ C⟦Γ⟧ yields Γ ⊢
M ∈ E⟦A⟧ by Lemma 17; thus M ∈ SN by Lemma 16.

From a logical viewpoint, contexts here form a Kripke model
similar to the canonical model Mc, but with ≼ instead of ≼c

as the outer transition. In this model, we may regard
• Γ ⊢ M ∈ E⟦A⟧ as a witness for Γ ⊩c A, and
• Γ ⊢ K ∈ K⟦A⟧ as a witness for Γ ⊭c A under certain

assumption Γ, γ ⊭c B, admitted by [−].
If ∆ ⊢ σ ∈ C⟦Γ⟧ is viewed as a function ι : Dc

Γ → Dc
∆, another

preorder ≼C is induced on W c, which is actually consistent
with ≼ in the sense of Lemma 17. Nevertheless, only ≼ can
be used in the rule E-blur to avoid circular definitions while
guaranteeing monotonicity.

B. Other Properties

For the other properties, we only present definitions and
statements here. See Appendix E for details.

Theorem 12 (Confluence). The β-reduction is confluent for
well-typed terms.

Corollary 2 (Uniqueness of β-normal form). A well-typed has
a unique β-normal form.

Definition 10.
1) A term is said to be canonical if its outermost term-former

is for an introduction rule and neutral otherwise.
2) A subformula of a formula is a literal subexpression with

some classifier maybe renamed.

Theorem 13 (Canonicity). If a term is well-typed, closed
regarding term variable, and β-normal, then it is canonical.

Theorem 14 (Subformula property). Suppose Γ ⊢ M : A. If
M is β-normal, then any subterm of M satisfies at least one
of the following:

a) Its type is a subformula of A;
b) Its type is a subformula of B for some x :γB ∈ Γ.

VIII. RELATED WORK

The idea of classifiers is inspired by <NJ> by Kiselyov et
al. [23]. <NJ> use refined environment classifiers to achieve
scope-safe code generation with run-time evaluation and effects.
At the same time, <NJ> was formulated as a two-level
calculus with code combinators, lacking capability of cross-stage
persistence; hence, it does not serve directly as a theoretical
foundation for MetaML-style MSP, nor is that the goal of <NJ>.
They also mentioned the idea of polymorphic classifiers, but
did not formalize it.

As the name of <NJ> suggests, they were conscious of its
logical correspondence. Yamasaki and Kiselyov highlighted
the connection between <NJ> and hybrid logic, especially that
between a code type and a satisfaction statement @aA [43]. This
statement means that A holds at the world represented by the
nominal a [44]. They interpret nominals as available resources.
We can find the similar idea in hybrid logic framework by
Reed [45]. While they are similar to bounded modal types,
satisfaction statements refer to absolute property and cannot
represent nested code types. Hence, we think hybrid logic is
not adequate for a foundation for MetaML-style MSP.

The judgment of BMTT has elements of Fitch-style modal
calculi [7], [11], [25], [26], labelled deduction [12], [33], [41],
[46], [47] and nested sequents [48]–[51]. From the viewpoint of
labelled deductive systems, BMTT manages both intuitionistic
and modal transitions via labels, similar to the proof system
by Marin et al. [47]. Meanwhile, modal transitions are almost
entirely (except WF-🔒) implicitly managed by 🔓 and 🔒. These
symbols are somewhat similar to nested sequents, although 🔓

and 🔒 do not necessarily need to appear as a pair in BMTT.
Xie et al. classified CSP into three kinds [22] and CSP

in our paper is actually heap-based CSP. BER MetaOCaml
supports heap-based CSP, but its type system gives up fully



∀∆ ≽ Γ.
(
∆ ⊢ K ∈ K⟦A⟧ =⇒ K[M ] ∈ SN

)
E-blur where Γ ≼ ∆ iff

 • Γ ⊢ γ1 ⊴ γ2 =⇒ ∆ ⊢ γ1 ⊴ γ2;
• x :γ A ∈ Γ =⇒ x :γ A ∈ ∆; and
• ∆ ⊢ pos(Γ) ⪯ pos(∆)Γ ⊢ M ∈ E⟦A⟧

Γ ⊢ x : A
E-id

Γ ⊢ x ∈ E⟦A⟧
K-id

Γ ⊢ [−] ∈ K⟦A⟧
Γ ⊢ N ∈ E⟦A⟧ Γ ⊢ K ∈ K⟦B⟧

K-→
Γ ⊢ K[[−]N ] ∈ K⟦A→B⟧

Γ ⊢ γ ⊑ pos(Γ) Γ ⊢ γ1 ⪯ pos(Γ) Γ ⊢ K ∈ K⟦A⟧
K-[]

Γ,🔒γ ⊢ K[~{γ [−]}] ∈ K⟦[⪰γ1 A]⟧
Γ ⊢ γ1 ⪯ γ Γ ⊢ K ∈ K⟦A[γ2 := γ]⟧

K-∀
Γ ⊢ K[[−]γ] ∈ K⟦∀γ2 :⪰ γ1. A⟧

C-id
Γ ⊢ ∅ ∈ C⟦Γ⟧

∆ ⊢ σ ∈ C⟦Γ⟧ ∆ ≼ ∆′
C-weak

∆′ ⊢ σ ∈ C⟦Γ⟧
∆ ⊢ σ ∈ C⟦Γ⟧ ∆ ⊢ M ∈ E⟦Aσ⟧

C-→
∆ ⊢ σ · [γ := pos(∆),x := M ] ∈ C⟦Γ,x :γA⟧

∆,🔒γ ⊢ σ ∈ C⟦Γ⟧ ∆ ⊢ γ1 σ ⪯ pos(∆)
C-[]

∆ ⊢ σ · [γ2 := pos(∆)] ∈ C⟦Γ,🔓γ2:⪰γ1⟧
∆ ⊢ σ ∈ C⟦Γ⟧ ∆ ⊢ γ1 σ ⪯ γ

C-∀
∆ ⊢ σ · [γ2 := γ] ∈ C⟦Γ,γ2 :⪰ γ1⟧

∆ ⊢ σ ∈ C⟦Γ⟧
C-🔒

∆,🔒γ σ ⊢ σ ∈ C⟦Γ,🔒γ⟧

Fig. 7. Reducibility. The predicates E⟦A⟧, K⟦A⟧, and C⟦Γ⟧ are for terms, for continuations, and for substitutions (contexts), respectively.

static detection of scoping errors [15]. To our knowledge, only
λ▷% by Hanada and Igarashi provides sound type system with
support of heap-based CSP [21]. However, it is an ad-hoc
extension of λ▷ and its logical counterpart is not clear.

Last but not least, we compare CMTT. CMTT was first
proposed by Nanevski et al. [10], annotateing a modal type
with a context Γ instead of classifiers. Furthermore, Murase
et al. proposed λ∀[] by extending CMTT with polymorphic
contexts, which plays a similar role as polymorphic classifiers in
BMTT [11]. Contextual modal types and bounded modal types
are alternative approaches to representing visible resources,
each with its own pros and cons.

In the context of MSP, we think BMTT has two major
advantages over CMTT. Firstly, quotes in CMTT need to bind
all free variables in a code fragment: for example, a code
fragment `{x+y} is represented as `{x,y. x+y}, binding x
and y. Hence, λ∀[] cannot directly encode a staged program
like fun x => ~{f `{ x }}, in which the function binds
a free variable within the quote. Instead, λ∀[] annotates
explicit substitutions in unquotes. In the λ∀[]-style program
fun x => { ~{f `{x'. x'}}[x] }, the explicit substitution
[x] annotates the unquote, stating that the free variable in a
spliced code fragment will be replaced with x. However, the
binding relation between the definition of x and x' in the quote
is no longer clear until this unquote is reduced. This encoding
of bindings also occurs in the example in I, and that is why we
stated that CMTT cannot represent CSP directly. BMTT does
not experience this issue as it represent open code fragments as
open terms.

Secondly, polymorphic contexts in λ∀[] is impredicative while
polymorphic classifiers in BMTT are first-order. Therefore,
BMTT would be easier to reason about from both theoretical
and practical perspectives.

It should be also noted that we can combine bounded modal
types and contextual modal types, like [A ⊢ B]γ , taking benefits
from both types. BMTT and CMTT are complementary rather
than conflicting paradigms.

IX. CONCLUSION AND FUTURE WORK

Motivated by multi-stage programming, we introduced and
studied BMTT, a modal type theory incorporating classifiers
into S4 modal types. We have demonstrated its potential for
application to multi-stage programming, including embedding
λ⃝ to BMTT. We have also defined Kripke semantics for its
logical counterpart and investigated metatheory about its syntax
and semantics. Although this paper emphasizes its MSP aspects,
our development of Kripke semantics offers more granular
models than existing proposals, and we expect it to provide
valuable insights into constructive logic in general.

We are interested in whether we can incorporate classifiers
and bounded modal types into other typing disciplines, including
polymorphic types [52], dependent types [53]–[55], and linear
types [56]. In particular, intensional analysis [17], [52], [57]–
[59] would be both an interesting and challenging topic
because quotes in BMTT are open by its inherent nature while
Kavvos pointed out that closedness is required for intensional
analysis [60]. We are also curious whether our methods can be
applied to modalities other than S4 by possibly incorporating
classifiers into dual-context calculi [7], [61] or multimodal type
theory [55].
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APPENDIX

A. Detailed Definitions and Proofs of Section III

Definition A.1. DomC(Γ) and DomV(Γ) represent set of
classifiers and variables declared in Γ, respectively.

DomC(ϵ) = {!}
DomC(Γ,x :

γA) = DomC(Γ) ∪ {γ}
DomC(Γ,🔓

γ1:⪰γ2) = DomC(Γ) ∪ {γ1}
DomC(Γ,🔒

γ) = DomC(Γ)

DomC(Γ,γ1 :⪰ γ2) = DomC(Γ) ∪ {γ1}
DomV(ϵ) = {}

DomV(Γ,x :
γA) = DomV(Γ) ∪ {x}

DomV(Γ,🔓
γ1:⪰γ2) = DomV(Γ)

DomV(Γ,🔒
γ) = DomV(Γ)

DomV(Γ,γ1 :⪰ γ2) = DomV(Γ)

Definition A.2. Scope transition judgment Γ ⊢ γ1 ⪯ γ2 and
modal transition judgment Γ ⊢ γ1 ⊑ γ2 are derived by following
rules. It also requires that ⊢ Γ: ctx (⊴ can be replaced with
either of ⪯ or ⊑).

ϵ ⊢ ! ⊴ !

Γ,x :γA ⊢ γ ⊴ γ

Γ,🔓γ1:⪰γ2 ⊢ γ1 ⊴ γ1

Γ,γ1 :⪰ γ2 ⊢ γ1 ⊴ γ1

Γ,x :γ2A ⊢ γ1 ⊴ γ2 iff Γ ⊢ γ1 ⊴ pos(Γ)

Γ,🔓γ2:⪰γ3 ⊢ γ1 ⪯ γ2 iff Γ ⊢ γ1 ⪯ γ3

Γ,🔓γ2:⪰γ3 ⊢ γ1 ⊑ γ2 iff Γ ⊢ γ1 ⊑ γ3

or Γ ⊢ γ1 ⊑ pos(Γ)
Γ,γ2 :⪰ γ3 ⊢ γ1 ⊴ γ2 iff Γ ⊢ γ1 ⊴ γ3

Γ,x :γ3A ⊢ γ1 ⊴ γ2 iff γ2 ̸= γ3 and Γ ⊢ γ1 ⊴ γ2

Γ,🔓γ3:⪰γ4 ⊢ γ1 ⊴ γ2 iff γ2 ̸= γ3 and Γ ⊢ γ1 ⊴ γ2

Γ,γ3 :⪰ γ4 ⊢ γ1 ⊴ γ2 iff γ2 ̸= γ3 and Γ ⊢ γ1 ⊴ γ2

Γ,🔒γ3 ⊢ γ1 ⊴ γ2 iff Γ ⊢ γ1 ⊴ γ2

Definition A.3. FC(A), FC(M ) represent a set of free
classifiers in A and M , respectively.

FC(p) = {}
FC(A → B) = FC(A) ∪ FC(B)

FC([⪰γA]) = FC(A) ∪ {γ}
FC(∀γ1 :⪰ γ2.A) = (FC(A)− {γ1}) ∪ {γ2}

FC(x ) = {}
FC(λx : γA.M ) = FC(M ) ∪ {γ}

FC(M1 M2) = FC(M1) ∪ FC(M2)

FC(‘{γ1:⪰γ2M }) = (FC(M ) ∪ {γ2})− {γ1}
FC(~{γM }) = FC(M ) ∪ {γ}

FC(λγ1 :⪰ γ2.M ) = (FC(M )− {γ1}) ∪ {γ2}
FC(M γ) = FC(M ) ∪ {γ}

Definition A.4. FV(M ) represents a set of free variables in
M .

FV(x ) = {x}
FV(λx : γA.M ) = FV(M )− {x}

FV(M1 M2) = FV(M1) ∪ FV(M2)

FV(‘{γ1:⪰γ2M }) = FV(M )

FV(~{γM }) = FV(M )

FV(λγ1 :⪰ γ2.M ) = FV(M )

FV(M γ) = FV(M )

Definition A.5. A well-formed context judgment ⊢ Γ: ctx and
well-formed type judgment Γ ⊢ A : type are derived by rules
listed in Figure 8

Definition A.6. A classifier substitution ·[γ1:=γ2] is a meta
operation on classifiers, types, terms and contexts, which replaces
free occurrences of γ1 with γ2.

γ1[γ2:=γ3] =

{
γ3 if γ1 = γ2

γ1 otherwise

p[γ1:=γ2] = p

(A → B)[γ1:=γ2] = A[γ1:=γ2] → B [γ1:=γ2]

[⪰γ1A][γ2:=γ3] = [⪰γ1[γ2:=γ3]A[γ2:=γ3]]

(∀γ1 :⪰ γ2.A)[γ3:=γ4] = ∀γ1 :⪰ γ2[γ3:=γ4].A[γ3:=γ4]

where γ1 ̸∈ {γ3, γ4}

x [γ1:=γ2] = x

(λx : γ1A.M )[γ2:=γ3] = λx : γ1A[γ2:=γ3]. (M [γ2:=γ3])

where γ1 ̸∈ {γ2, γ3}
(M N )[γ1:=γ2] = (M [γ1:=γ2]) (N [γ1:=γ2])

‘{γ1:⪰γ2M }[γ3:=γ4] = ‘{γ1:⪰γ2[γ3:=γ4]M [γ3:=γ4]}
where γ1 ̸∈ {γ3, γ4}

~{γ1M }[γ2:=γ3] = ~{γ1[γ2:=γ3]M [γ1:=γ2]}
(λγ1 :⪰ γ2.M )[γ3:=γ4] = λγ1 :⪰ γ2[γ3:=γ4]. (M [γ3:=γ4])

where γ1 ̸∈ {γ3, γ4}
(M γ1)[γ2:=γ3] = (M [γ2:=γ3])γ1[γ2:=γ3]

ϵ[γ1:=γ2] = ϵ

(x :γ1A,Γ)[γ2:=γ3] = x :γ1A[γ2:=γ3],Γ[γ2:=γ3]

where γ1 ̸∈ {γ2, γ3}
(🔓γ1:⪰γ2 ,Γ)[γ3:=γ4] = 🔓γ1:⪰γ2[γ3:=γ4],Γ[γ3:=γ4]

where γ1 ̸∈ {γ3, γ4}
(🔒γ1 ,Γ)[γ2:=γ3] = 🔒γ1[γ2:=γ3],Γ[γ2:=γ3]

(γ1 :⪰ γ2,Γ)[γ3:=γ4] = γ1 :⪰ γ2[γ3:=γ4],Γ[γ3:=γ4]



WF-ϵ
⊢ ϵ : ctx

⊢ Γ: ctx x ̸∈ DomV(Γ) Γ ⊢ A : type γ ̸∈ DomC(Γ)
WF-Var

⊢ Γ,x :γA : ctx

⊢ Γ: ctx γ1 ̸∈ DomC(Γ) γ2 ∈ DomC(Γ)
WF-🔓

⊢ Γ,🔓γ1:⪰γ2 : ctx

⊢ Γγ : ctx Γγ ⊢ δ ⊑ γ
WF-🔒

⊢ Γγ ,🔒δ : ctx

⊢ Γ: ctx γ1 ̸∈ DomC(Γ) γ2 ∈ DomC(Γ)
WF-:⪰

⊢ Γ,γ1 :⪰ γ2 : ctx

⊢ Γ: ctxWF-p
Γ ⊢ p : type

Γ ⊢ A : type Γ ⊢ B : type
WF-→

Γ ⊢ A → B : type

Γ ⊢ A : type γ ∈ DomC(Γ)
WF-[]

Γ ⊢ [⪰γA] : type

Γ,γ1 :⪰ γ2 ⊢ A : type
WF-∀

Γ ⊢ ∀γ1 :⪰ γ2.A : type

Fig. 8. Derivation Rules for Well-Formednes Judgments

where γ1 ̸∈ {γ3, γ4}

Definition A.7. A variable substitution ·[γ1:=γ2,x :=M ] is a
meta operation on terms that replaces free occurrences of γ1
and x with γ2 and M , respectively. Its definition is given in
Figure 9.

Definition A.8 (Full rules for Definition 1). The full definition
of derivation rules for M1@γ ⇒β M2 are follows.

Axioms

(λx : γ2A.M ) N@γ1 ⇒β M [γ2:=γ1,x :=N ]

~{γ2 ‘{γ3:⪰γ4M }}@γ1 ⇒β M [γ3:=γ1]

(λγ2 :⪰ γ3.M )γ4@γ1 ⇒β M [γ2:=γ4]

Compatibility Rules

M1@γ1 ⇒β M2

λx : γ1A.M1@γ2 ⇒β λx : γ1A.M2

M1@γ1 ⇒β M2

M1 N@γ1 ⇒β M2 N

M1@γ1 ⇒β M2

N M1@γ1 ⇒β N M2

M1@γ1 ⇒β M2

‘{γ1:⪰γ2M1}@γ3 ⇒β ‘{γ1:⪰γ2M2}

M1@γ1 ⇒β M2

~{γ1M1}@γ2 ⇒β ~{γ1M2}

M1@γ1 ⇒β M2

λγ2 :⪰ γ3.M1@γ1 ⇒β λγ2 :⪰ γ3.M2

M1@γ1 ⇒β M2

M1γ2@γ1 ⇒β M2γ2

Lemma 1 (On page 3). Judgments below are derivable.
1) Γγ

1 ,x :
δA,Γ2 ⊢ γ ⪯ δ

2) Γγ1

1 ,🔓δ:⪰γ2 ,Γ2 ⊢ γ2 ⪯ δ
3) Γγ1

1 ,🔓δ:⪰γ2 ,Γ2 ⊢ γ2 ⊑ δ
4) Γγ1

1 ,🔓δ:⪰γ2 ,Γ2 ⊢ γ1 ⊑ δ
5) Γ1, δ :⪰ γ,Γ2 ⊢ γ ⪯ δ

Proof. By induction on the size of Γ2. Note that we need
Γ1 ⊢ γ ⪯ γ in 4, which is ensured by ⊢ Γ: ctx.

Lemma 2 (On page 3). Statements below hold. (⊴=⪯ or ⊑)
1) γ ∈ DomC(Γ) =⇒ Γ ⊢ γ ⊴ γ.
2) Γ ⊢ γ1 ⊴ γ2 and Γ ⊢ γ2 ⊴ γ3 =⇒ Γ ⊢ γ1 ⊴ γ3.
3) Γ ⊢ γ1 ⪯ γ2 =⇒ Γ ⊢ γ1 ⊑ γ2.

Proof. 1) By induction on the size of Γ.
2) By induction on the derivation Γ ⊢ γ2 ⊴ γ3.
3) By induction on the derivation Γ ⊢ γ1 ⪯ γ2. Basically

we construct the derivation of Γ ⊢ γ1 ⊑ γ3 from that of
Γ ⊢ γ1 ⪯ γ3, where each derivation step is obtained by
replacing ⪯ with ⊑.

Lemma A.1. 1) Γ ⊢ A : type =⇒ ⊢ Γ: ctx
2) Γ ⊢ M : A =⇒ ⊢ Γ: ctx

Proof. 1) By induction on the definvation of Γ ⊢ A : type.
2) By induction on the definvation of Γ ⊢ M : A.

Theorem 1 (Weakening (On page 4)). Given ⊢ Γ,∆: ctx,
1) Γ ⊢ A : type ⇒ Γ,∆ ⊢ A : type.
2) Γ ⊢ γ1 ⊴ γ2 ⇒ Γ,∆ ⊢ γ1 ⊴ γ2. (⊴ = ⪯ or ⊑)

Proof. We prove 1 as a special case of the following statement.
• If Γ,∆1 ⊢ A : type and ⊢ Γ,∆2,∆1 : ctx where ∆1 =

γ1 :⪰ γ′
1 . . .γi :⪰ γ′

i and ∆1#∆2, then Γ,∆2,∆1 ⊢
A : type.

We can prove it by induction on the derivation of Γ,∆1 ⊢
A : type. 2 can be proved by induction on the derivation of
Γ ⊢ γ1 ⊴ γ2.



x [γ1:=γ2,y :=M ] =

{
M where x = y

x otherwise

(λx : γ1A.M )[γ2:=γ3,y :=M ] = λx : γ1A[γ2:=γ3]. (M [γ2:=γ3,y :=M ])

where γ1 ̸∈ {γ2, γ3} and x ̸= y

(M1 M2)[γ1:=γ2,x :=N ] = M1[γ1:=γ2,x :=N ] M2[γ1:=γ2,y :=N ]

‘{γ1:⪰γ2M }[γ3:=γ4,x :=N ] = ‘{γ1:⪰γ2[γ3:=γ4]M [γ3:=γ4,x :=N ]}
where γ1 ̸∈ {γ3, γ4}

~{γ1M }[γ2:=γ3,x :=N ] = ~{γ1[γ2:=γ3]M [γ2:=γ3,x :=N ]}
(λγ1 :⪰ γ2.M )[γ3:=γ4,x :=N ] = λγ1 :⪰ γ2[γ3:=γ4]. (M [γ3:=γ4,x :=N ])

where γ1 ̸∈ {γ3, γ4}
(M γ1)[γ2:=γ3,x :=N ] = M [γ2:=γ3,x :=N ]γ1[γ2:=γ3]

Fig. 9. Definition of Variable Substitution

Theorem 2 (Monotonicty (On page 4)). Given ∆1#∆2 and
Γγ1 ,∆γ2

1 ⊢ γ1 ⪯ γ2, then the following statements hold:
1) ⊢ Γ,∆2 : ctx =⇒ ⊢ Γ,∆1,∆2 : ctx.
2) Γ,∆2 ⊢ A : type =⇒ Γ,∆1,∆2 ⊢ A : type.
3) Γ,∆2 ⊢ δ1 ⪯ δ2 =⇒ Γ,∆1,∆2 ⊢ δ1 ⪯ δ2.
4) Γ,∆2 ⊢ δ1 ⊑ δ2 =⇒ Γ,∆1,∆2 ⊢ δ1 ⊑ δ2.
5) Γ,∆2 ⊢ M : A =⇒ Γ,∆1,∆2 ⊢ M : A.

Proof. By mutual induction the derivation of each judgment.
We focus on the most important case in (3).

Case Derived from Γγ1

1 ,∆δ3
3 ⊢ δ1 ⪯ δ3 where ∆2 =

∆3,x :
δ2A: We apply the induction hypothesis to get

Γγ1

1 ,∆γ2

1 ,∆δ4
3 ⊢ δ1 ⪯ δ3. Note that δ3 = δ4 does not necesarilly

hold, and we need to check both cases. If δ3 = δ4, we can
simply derive Γ,∆1,∆2 ⊢ δ1 ⪯ δ2. Otherwise, we have
δ3 = γ1 and δ4 = γ2. As we have Γγ1

1 ,∆γ2

1 ,∆δ4
3 ⊢ γ1 ⪯ γ2

from the assumption and weakening, we apply Lemma 2(2)
to obtain Γ,∆1,∆

δ4
3 ⊢ δ1 ⪯ δ4. Therefore we can derive

Γ,∆1,∆2 ⊢ δ1 ⪯ δ2.
Other cases in (3) and (4) works similarly, where we use

the assumption and Γγ1

1 ,∆γ2

1 ⊢ γ1 ⪯ γ2 and Lemma 2(2) on
demand. (1)(2)(5) are straightforward induction with some cases
depending on (3)(4).

Lemma 3 (Variable Substitution (On page 4)). Let ∆1 =
Γγ1

1 ,x :γ2A,Γ2, and ∆2 = Γ1,Γ2[γ2:=γ1]. Then, the following
statements hold.

1) ⊢ ∆1 : ctx =⇒ ⊢ ∆2 : ctx.
2) ∆1 ⊢ A : type =⇒ ∆2 ⊢ A[γ2:=γ1] : type.
3) ∆1 ⊢ δ1 ⪯ δ2 =⇒ ∆2 ⊢ δ1[γ2:=γ1] ⪯ δ2[γ2:=γ1].
4) ∆1 ⊢ δ1 ⊑ δ2 =⇒ ∆2 ⊢ δ1[γ2:=γ1] ⊑ δ2[γ2:=γ1].
5) ∆1 ⊢ M1 : B and Γ1 ⊢ M2 : A

=⇒ ∆2 ⊢ M1[γ2:=γ1,x :=M2] : B [γ2:=γ1].

Proof. By mutual induction on the defivation of the first
judgment for each statements. To prove the case of typing
judgment, we use Theorem 2 for the base case where M1 is
variable.

Lemma 4 (Rebasing (On page 5)). Let ∆1 =
(Γγ1

1 ,🔒γ2 ,🔓γ3:⪰γ4 ,Γ2), and ∆2 = Γ1,Γ2[γ3:=γ1]. Supposing
Γ1 ⊢ γ4 ⪯ γ1, the following statements hold,

1) ⊢ ∆1 : ctx =⇒ ⊢ ∆2 : ctx.
2) ∆1 ⊢ A : type =⇒ ∆2 ⊢ A[γ3:=γ1] : type.
3) ∆1 ⊢ δ1 ⪯ δ2 =⇒ ∆2 ⊢ δ1[γ3:=γ1] ⪯ δ2[γ3:=γ1].
4) ∆1 ⊢ δ1 ⊑ δ2 =⇒ ∆2 ⊢ δ1[γ3:=γ1] ⊑ δ2[γ3:=γ1].
5) ∆1 ⊢ M1 : A =⇒ ∆2 ⊢ M [γ3:=γ1] : A[γ3:=γ1].

Proof. By mutual induction on the first derivarion of each
statements.

Lemma 5 (Classifier Substitution (On page 5)). Let ∆1 =
Γ1,γ1 :⪰ γ2,Γ2 and ∆2 = Γ1,Γ2[γ1:=γ3]. Given Γ1 ⊢ γ2 ⪯
γ3, then the following statements hold.

1) ∆1 ⊢ A : type =⇒ ∆2 ⊢ A[γ1:=γ3] : type.
2) ⊢ ∆1 : ctx =⇒ ⊢ ∆2 : ctx.
3) ∆1 ⊢ δ1 ⪯ δ2 =⇒ ∆2 ⊢ δ1[γ1:=γ3] ⪯ δ2[γ1:=γ3].
4) ∆1 ⊢ δ1 ⊑ δ2 =⇒ ∆2 ⊢ δ1[γ1:=γ3] ⊑ δ2[γ1:=γ3].
5) ∆1 ⊢ M : A =⇒ ∆2 ⊢ M [γ1:=γ3] : A[γ1:=γ3].

Proof. By mutual induction on the first derivarion of each
statements.

Lemma 6 (Local Soundness Patterns (On page 5)).
1) Γγ1 ⊢ (λx : γ2A.M ) N : B

=⇒ Γ ⊢ M [γ2:=γ1,x :=N ] : B .
2) Γγ1 ⊢ ~{γ2 ‘{γ3:⪰γ4M }} : A =⇒ Γ ⊢ M [γ3:=γ1] : A.
3) Γ ⊢ (λγ1 :⪰ γ2.M )γ3 : A =⇒ Γ ⊢ M [γ1:=γ3] : A.

Proof. Easy to prove with Lemma 3, Lemma 4 and Lemma 5.

Lemma 7 (Local Completeness Patterns (On page 5)). (δ is
taken freshly)

1) Γ ⊢ M : A → B =⇒ Γ ⊢ λx : δA. (M x ) : A → B .
2) Γγ1 ⊢ M : [⪰γ2A] ⇒ Γ ⊢ ‘{δ:⪰γ2~{γ1M }} : [⪰γ2A].
3) Γ ⊢ M : ∀γ1 :⪰ γ2.A

=⇒ Γ ⊢ λδ :⪰ γ2. (M δ) : ∀γ1 :⪰ γ2.A.



Proof. Easy to prove with Theorem 2.

Theorem 3 (Subject Reduction (On page 5)). If Γγ ⊢ M1 : A
and M1@γ ⇒β M2, then Γ ⊢ M2 : A.

Proof. By induction on the derivation of M1@γ ⇒β M2. For
base cases, we apply Lemma 6.

B. Detailed Proofs of Section IV

Theorem 4 (Type-Safe Residualization (On page 6)). If ϵ ⊢
M : [⪰!A] and M is normal with regard to ⇒β , then M =
‘{γ:⪰!M ′} for some M ′ and ϵ ⊢ M ′[γ:=!] : A is derivable.

Proof. M is normal form and typed [⪰!A] under an empty
context, []-I is the only applicable rule. Hence, there must be
M ′ and γ such that M = ‘{γ:⪰!M ′} holdsfrom Theorem 13. It
is derived from 🔓γ:⪰! ⊢ M ′ : A and γ ̸∈ FC(A). We can see
that 🔒!,🔓γ:⪰! ⊢ M ′ : A is also derivable from monotonicity,
and then we apply rebasing to obtain ϵ ⊢ M ′[γ:=!] : A.

C. Detailed Definitions and Proofs of Section V

1) Embedding from Kripke-style S4 modal lambda-calculus:
There are several variants of S4 Kripke/Fitch-style modal
lambda-calculi with different term assignments [7], [25]–[27].
Here we use an S4 Kripke-style modal lambda-calculus by
Davies and Pfenning [7], which we call λ□S4

in this paper. In
λ□S4

, unbox carries an integer that represents the number of
modal transitions, which makes the definition of our translation
simpler.

The syntax and typing rules of λ□S4
are shown in Fig.10.

Note that we tweak definitions around contexts to more like
Fitch-style, which does not change the essence of λ□S4

.
λ□S4

can be considered as restricted version of BMTT, where
quoted code is always closed. This means that a box type □A
corresponds to a bounded modal type with an initial classifier
[⪰γA]. The whole definition of the translation is provided
in Figure 11.

The term translation ⦇M ⦈
−→γ carries a sequence of classifiers

−→γ , which represents positions for each past stage. The context
translation judgment Γ ⇝ Γ/−→γ states that Γ can be translated
to Γ where positions of past states are −→γ . We can prove this
translation preserves typeability.

Lemma C.1. Γ ⊢ ! ⪯ γ and Γ ⊢ ! ⊑ γ hold as long as
γ ∈ DomC(Γ).

Proof. By induction on the derivation of Γ ⊢ ! ⪯ γ and
Γ ⊢ ! ⊑ γ.

Theorem C.1. If Γ ⊢ M : A and Γ ⇝ Γ/−→γ , then Γ ⊢
⦇M ⦈

−→γ : ⦇A ⦈ holds.

Proof. By induction on the derivation of Γ ⊢ M : A . We
demonstrate the case of □-E.

Case □-E: We have a derivation

Γ 1 ⊢ M ′ : □A k 🔓 in Γ 2

Γ 1,Γ 2 ⊢ unboxkM ′ : A

where Γ 1,Γ 2 = Γ . Here, we can assume that Γ 2 starts with
🔓 or Γ 2 is empty otherwise, by the weakening property of

Variables x , y
Types A ,B ::= p | A → B | □A
Terms M ,N ::= x | λxA .M | M N

| box {M } | unboxkM
Context Γ ,∆ ::= ϵ | Γ , x : A | Γ , 🔓

x : A ∈ tail(Γ )
Var

Γ ⊢ x : A

Γ , x : A ⊢ M : B
→-I

Γ ⊢ λxA .M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A→-E
Γ ⊢ M N : B

Γ , 🔓 ⊢ M : A
□-I

Γ ⊢ box {M } : □A

Γ ⊢ M : □A k 🔓 appear in ∆
□-E

Γ ,∆ ⊢ unboxkM : A

tail(ϵ) = ϵ

tail(Γ , x : A ) = tail(Γ ), x : A

tail(Γ , 🔓) = ϵ

Fig. 10. Syntax and Typing Rules of λ□S4

typing judgments in λ□S4
. Decomposing −→γ to −→γ ′

, δ0 . . . δk , we
derive Γ 1 ⇝ ∆,🔒δ0/−→γ ′

, δ0 from Γ 1,Γ 2 ⇝ ∆/−→γ ′
, δ0 . . . δk

where pop((Γ 1,Γ 2), k) = Γ 1. Then we can apply the
induction hypothesis, and get ∆,🔒δ0 ⊢ ⦇M ′⦈

−→γ ′,δ0 : [⪰!⦇A ⦈].
We apply []-E to derive ∆ ⊢ ~{δ0⦇M ′⦈

−→γ ′,δ0} : ⦇A ⦈, which is
what we want.

2) Emedding of λ⃝: We give the detailed definitions of λ⃝
in Figure 12.

Lemma C.2. If Γ◦@k ⇝≤l ∆/γ0 . . . γl , then pos(∆) = γk .

Proof. By induction on the derivation of Γ◦@k ⇝≤l

∆/γ0 . . . γl .

Lemma C.3. If the derivation Γ◦
1,Γ

◦
2@k1 ⇝≤l

∆1,∆2/γ0 . . . γl includes another derivation of
Γ◦
1@k2 ⇝≤l ∆1/δ0 . . . δl , then ∆1,∆2 ⊢ γn ⪯ δn for

all n such that 0 ≤ n ≤ l .

Proof. By induction on the derivation of Γ◦
1,Γ

◦
2@k1 ⇝≤l

∆1,∆2/γ0 . . . γl .

Lemma C.4. If Γ◦@k ⇝≤l ∆/γ0 . . . γl , then ∆ ⊢ γn ⊑ γn+
for any n such that 0 ≤ n < k .

Proof. By induction on the derivation of Γ◦@k ⇝≤l

∆/γ0 . . . γl .

Lemma C.5. Supposing ⦇A◦⦈γk ...γl

@k≤l is defined,
⦇A◦⦈γk ...γl

@k≤l [γk :=δk ] . . . [γl :=δl ] = ⦇A◦⦈δk ...δl@k≤l



Type ⦇A ⦈

⦇p⦈ =p

⦇A → B ⦈ =⦇A ⦈ → ⦇B ⦈
⦇□A ⦈ =[⪰!⦇A ⦈]

Terms ⦇M ⦈
−→γ

⦇x ⦈
−→γ =x

⦇λxA .M ⦈
−→γ ,δ1 =λx : δ2⦇A ⦈. ⦇M ⦈

−→γ ,δ2

where δ2 is fresh

⦇M N ⦈
−→γ =⦇M ⦈

−→γ ⦇N ⦈
−→γ

⦇box {M }⦈
−→γ =‘{δ:⪰!⦇M ⦈

−→γ ,δ}
where δ is a fresh classifier

⦇unboxkM ⦈
−→γ ,δ0...δk =~{δ0⦇M ⦈

−→γ ,δ0}

Contexts Γ ⇝ Γ/−→γ

ϵ⇝ ϵ/!

Γ ⇝ Γ/−→γ , δ1 δ2 is fresh

Γ , x : A ⇝ Γ,x :δ2⦇A ⦈/−→γ , δ2

Γ ⇝ Γ/−→γ δ is fresh

Γ , 🔓⇝ Γ,🔓δ:⪰!/−→γ , δ

Γ ⇝ Γ/−→γ , δ0 . . . δk

pop(Γ , k)⇝ Γ,🔒δ0/−→γ , δ0

pop(Γ , 0) = Γ

pop((Γ , x : A ), k+) = pop(Γ , k+)

pop((Γ , 🔓), k+) = pop(Γ , k)

Fig. 11. Translation from λ□S4
to BMTT

Proof. By induction on the structure of A◦.

Theorem 6 (On page 7). If Γ◦ ⊢k M◦ : A◦ holds in λ⃝,
Γ◦@k ⇝≤l ∆/γ0 . . . γl holds and l is sufficiently large, then
∆ ⊢ ⦇M◦⦈γ0...γl

@k≤l : ⦇A◦⦈γk+1...γl

@k≤l holds in BMTT.

Proof. By induction on the derivation of Γ◦ ⊢k M◦ : A◦. We
provide non-trivial cases for Var, →-E and ⚬-E.

Case Var: By inversion, we have

Γ◦
1, x :k A◦,Γ◦

2 ⊢k x : A◦

where Γ◦ = Γ◦
1, x :k A◦,Γ◦

2 and M◦ = x . In the derivation
of Γ◦@k ⇝≤l ∆/γ0 . . . γl , we have a following derivation by
⇝-V, where ∆ = ∆1,x :

δ′
((A◦))

δk+...δl
@k≤l ,∆2 for some ∆2.

Γ◦
1@k ⇝≤l ∆1/δ0 . . . δl

Γ◦
1, x :k A◦@k ⇝≤l ∆1,x :

δ′
((A◦))

δk+...δl
@k≤l /(δ0 . . . δl)[k ↦→ δ′]

Variables x , y
Staging Level k ∈ N

Types A◦, B◦ ::= p | A◦ → B◦ | ⚬A◦

Terms M◦, N◦ ::= x | λxA◦
.M◦ | M◦ N◦

| next {M◦} | prev {M◦}
Context Γ◦,∆◦ ::= ϵ | Γ◦, x :k A◦

Γ◦ ⊢k M◦ : A◦

x :k A◦ ∈ Γ◦
Var

Γ◦ ⊢k x : A◦
Γ◦, x :k A◦ ⊢k M◦ : B◦

→-I
Γ◦ ⊢k λxA◦

.M◦ : A◦ → B◦

Γ◦ ⊢k M◦ : A◦ → B◦ Γ◦ ⊢k N◦ : A◦
→-E

Γ◦ ⊢k M◦ N◦ : B◦

Γ◦ ⊢k+1 M◦ : A◦
⚬-I

Γ◦ ⊢k next {M◦} : ⚬A◦

Γ◦ ⊢k M◦ : ⚬A◦
⚬-E

Γ◦ ⊢k+1 prev {M◦} : A◦

M◦
1 ⇒β M◦

2

Axioms

(λxA◦
.M◦

1) M
◦
2 ⇒β M◦

1[x :=M◦
2] β-→

prev {next {M◦}} ⇒β M◦ β-⚬

Compatibility
M◦

1 ⇒β M◦
2

λxA◦
.M◦

1 ⇒β λxA◦
.M◦

2

M◦
1 ⇒β M◦

2

M◦
1 N◦ ⇒β M◦

2 N◦
M◦

1 ⇒β M◦
2

N◦ M◦
1 ⇒β N◦ M◦

2

M◦
1 ⇒β M◦

2

next {M◦
1} ⇒β next {M◦

2}
M◦

1 ⇒β M◦
2

prev {M◦
1} ⇒β prev {M◦

2}
Fig. 12. Detailed Definition of λ⃝

For such δ′, we have ∆ ⊢ δ′ ⪯ γk from Lemma C.3. From
C.2, we have pos(∆) = γk . Therefore, ∆ ⊢ δ′ ⪯ pos(∆)

holds, and we can use Var to derive ∆ ⊢ x : ((A◦))
δk+...δl
@k≤l . From

the definition, ((A◦))
δk+...δl
@k≤l = ∀δ′′

k+
≥δk+ . . . ∀δ′′

l ≥δl ⦇A
◦⦈δ

′′
k+...δ′′l

@k≤l .
Also, ∆ ⊢ δn ⪯ γn for any n such that 0 ≤ n ≤ l from
Lemma C.3. Hence, we can apply ∀-E as follows.

∆ ⊢ x : ∀δ′′
k+

≥δk+ . . . ∀δ′′
l ≥δl ⦇A

◦⦈δ
′′
k+...δ′′l

@k≤l

∆ ⊢ δn ⪯ γn for any n s.t. k+ ≤ n ≤ l

∆ ⊢ xγk+ . . . γl : ⦇A◦⦈δ
′′
k+...δ′′l

@k≤l [δ′′k+:=γk+] . . . [δ
′′
l :=γl ]

We have ⦇A◦⦈δ
′′
k+...δ′′l

@k≤l [δ′′k+:=γk+] . . . [δ
′′
l :=γl ] = ⦇A◦⦈γk+...γl

@k≤l

from C.5. Therefore this is what we want.

Case →-E: By inversion, we have



Γ◦ ⊢k M◦
1 : B◦ → A◦ Γ◦ ⊢k M◦

2 : B◦

Γ◦ ⊢k M◦
1 M◦

2 : A◦

where M◦ = M◦
1 M◦

2. For the first assumption,
we apply the induction hypothesis and get
∆ ⊢ ⦇M◦

1⦈
γ0...γl

@k≤l : ((B◦))
γk+...γl

@k≤l → ⦇A◦⦈γk+...γl

@k≤l .
For the second assumption, we first derive
Γ◦@k ⇝≤l ∆,γ′

k+:⪰ γk+ . . .γ′
l :⪰ γl/γ0 . . . γk , γ

′
k+ . . . γ′

l

by ⇝-M. Then we use the inducion hypothesis
with this context to get ∆,γ′

k+:⪰ γk+ . . .γ′
l :⪰ γl ⊢

⦇M◦
2⦈

γ0...γk ,γ
′
k+...γ′

l

@k≤l : ⦇B◦⦈γ
′
k+...γ′

l

@k≤l . We apply ∀-I multiple
times to get ∆ ⊢ ((M◦

2))
γ0...γl

@k≤l : ((B
◦))

γk+...γl

@k≤l . Finally we apply
→-E to obtain ∆ ⊢ ⦇M◦

1⦈
γ0...γl

@k≤l ((M◦
2))

γ0...γl

@k≤l : ⦇A◦⦈γk+...γl

@k≤l ,
which is what we want.

Case ⚬-E: By inversion, we have

Γ◦ ⊢k M◦′ : ⚬A◦

Γ◦ ⊢k prev {M◦′} : A◦

where prev {M◦′} = M◦. We use⇝-🔒 to derive Γ◦@k−⇝≤l

∆,🔒γk−/γ0 . . . γl . Here, we can confirm that ⊢ ∆,🔒γk− : ctx
by Lemma C.4. Then we apply the induction hypothesis to
get ∆,🔒γk− ⊢ ⦇M◦′⦈γ0...γl

@k−≤l : [
⪰γk ⦇A◦⦈γk+...γl

@k≤l ]. As ∆,🔒γk− ⊢
γk ⪯ pos(∆) holds from C.2, and we can apply []-E to derive
∆ ⊢ ~{γk−⦇M◦′⦈γ0...γl

@k−≤l} : ⦇A◦⦈γk+...γl

@k≤l , which is what we want.

Lemma 8 (On page 7). If Γ◦ ⊢k M◦ : A◦ and Γ◦@k ⇝≤l

∆/γ0 . . . γl , then |⦇M◦⦈γ0...γl

@k≤l | = M◦ and |⦇A◦⦈γk+...γl

@k≤l | = A◦.

Proof. By induction on the structure of M◦ and A◦.

Lemma C.6. Suppose Γ ⊢ M1 : A and Γ ⊢ M2 : A. If |M1| ⇒β

|M2|, then M1 ⇛∗
β M2.

Proof. By induction on the derivation of |M1| ⇒β |M2|. We
focus on the case for β-→. β-⚬ works in the similar manner,
and other cases are straightforward.

Case β-→: Let |M1| = (λxB◦
. N◦

1) N◦
2. Then |M2| =

N◦
1[x :=N◦

2]. M1 has the form of C[λx : γB .M3] M4,
where N◦

1 = |M3|, N◦
2 = |M4|, and C is a eval-

uation context that consists of only classifier abstraction
and classifier applications. The condition Γ ⊢ M1 : A
ensures that Γ ⊢ C[λx : γB .M3] : B → A. Hence,
C consists of redexes that can be reduced. Therefore,
we have C[λx : γB .M3]@pos(Γ) ⇒∗

β λx : γB .M3, and
M1@pos(Γ) ⇒∗

β M3[γ:=pos(Γ),x :=M4]. Here it is easy
to confirm N◦

1[x :=N◦
2] = |M3[γ:=pos(Γ),x :=M4]|, and

we have |M3[γ:=pos(Γ),x :=M4]| = |M2|. Hence we get
M1 ⇛∗

β M2 from the definition of ⇛∗
β .

Theorem 7 (On page 7). Suppose Γ◦ ⊢k M◦
1 : A◦

and Γ◦@k ⇝≤l ∆/−→γ hold. If M◦
1 ⇒β M◦

2, then
⦇M◦

1⦈
−→γ
@k≤l ⇛

∗
β ⦇M◦

2⦈
γ0...γl

@k≤l .

Proof. Direct result from Theorem 6, Lemma 8 and Lemma C.6.

D. Detailed Proofs of Section VI

Lemma 9 (Monotonicity (On page 9)). Suppose w ≼ v and
ι(d) ⪯v e.

1) If w, d ⊩ρ A, then v, e ⊩ι(ρ) A.
2) If w ⊩ρ γ1 ⪯ γ2, then v ⊩ι(ρ) γ1 ⪯ γ2.
3) If w ⊩ρ γ1 ⊑ γ2, then v ⊩ι(ρ) γ1 ⊑ γ2.

Proof. (2) and (3) follows from monotonicity of ι. For (1),
it suffices to check that for all d′ ⪰w d, if w, d ⊨ρ A, then
w, d′ ⊨ρ A. We proceed by induction on A.
Case A ≡ p: Follows from that Vw(p) is upward-closed.
Case A ≡ B → C: By definition.
Case A ≡ [⪰γB]: Suppose w, d ⊨ρ [⪰γ B] and d ⪯w d′.
Take e ⊒w d′ such that e ⪰w ρ(γ). By left-stability we have
d ⊑w e, so that w, e ⊩ρ B since w, d ⊨ρ [⪰γB], which implies
w, e ⊨ρ [⪰γB].
Case A ≡ ∀γ2 :⪰ γ1. B: Immediate from the IH.

Corollary D.1. If w ≼ v and w ⊩ρ Γ, then v ⊩ι(ρ) Γ.

Lemma D.1 (Substitution). w, d ⊩ρ · [γ2 ↦→ρ(γ1)] A iff w, d ⊩ρ

A[γ2 := γ1].

Proof. By induction on A.

Theorem 8 (Kripke soundness (On page 9)).
1) If Γ ⊢ A, then Γ ⊩ A.
2) If Γ ⊢ γ1 ⪯ γ2, then Γ ⊩ γ1 ⪯ γ2.
3) If Γ ⊢ γ1 ⊑ γ2, then Γ ⊩ γ1 ⊑ γ2.

Proof. (2) and (3) are mostly straightforward, so we show (1)
here. We proceed by induction on derivation.

Suppose Γ ⊢ A. Assuming w ⊩ρ Γ, we show w, pos(Γ) ⊩ρ

A. We analyze the last rule of the derivation:
Case Var: Assume

x :γA ∈ Γ Γ ⊢ γ ⪯ pos(Γ)

Γ ⊢ A

By assumption we have w, ρ(γ) ⊩ρ A, and from (2), ρ(γ) ⪯w

ρ(pos(Γ)) holds. By Lemma 9 we see w, ρ(pos(Γ)) ⊩ρ A.
Case →-I: Assume

Γ,x :γB ⊢ C γ /∈ FC(C)

Γ ⊢ B → C

Take v ≽ w and d ⪰v ι(ρ(pos(Γ))), and suppose v, d ⊩ι(ρ) B.
By Corollary D.1 we have v ⊩ι(ρ) Γ, so letting ρ′ = ι(ρ) · [γ ↦→
d] we obtain v ⊩ρ′

Γ,x :γ B. By the IH, v, d ⊩ρ′
C holds,

and so does v, d ⊩ι(ρ) C as γ /∈ FC(C), which implies
w, ρ(pos(Γ)) ⊩ρ B → C.
Case →-E: Assume

Γ ⊢ B → C Γ ⊢ B

Γ ⊢ C

By the IH, we have w, ρ(pos(Γ)) ⊩ρ B → C and w,
ρ(pos(Γ)) ⊩ρ B. Since w ≼ w and ρ(pos(Γ)) ⪯w ρ(pos(Γ)),
we obtain w, ρ(pos(Γ)) ⊩ρ C.



Case []-I: Assume

Γ,🔓γ2:⪰γ1 ⊢ B γ2 /∈ FC(B)

Γ ⊢ [⪰γ1 B]

Take v ≽ w and d ⊒v ι(ρ(pos(Γ))). By Corollary D.1 we
have v ⊩ι(ρ) Γ, so letting ρ′ = ι(ρ) · [γ2 ↦→ d] we obtain
v ⊩ρ′

Γ,🔓γ2:⪰γ1 . By the IH, v, d ⊩ρ′
B holds, and so does

v, d ⊩ι(ρ) B as γ2 /∈ FC(B), which implies w, ρ(pos(Γ)) ⊩ρ

[⪰γ1 B].
Case []-E: Assume

Γ,🔒γ ⊢ [⪰γ1 B] Γ ⊢ γ1 ⪯ pos(Γ)

Γ ⊢ B

From w ⊩ρ Γ, we have w ⊩ρ Γ,🔒γ , and by (2), also ρ(γ1) ⪯w

ρ(pos(Γ)). Since Γ,🔒γ is well-formed, there should be a
subderivation of Γ ⊢ γ ⊑ pos(Γ), which gives ρ(γ) ⊑w

ρ(pos(Γ)) by (3). Applying the IH to Γ,🔒γ ⊢ [⪰γ1B], we have
w, ρ(γ) ⊩ρ [⪰γ1B], and from w ≼ w, we see w, ρ(pos(Γ)) ⊩ρ

B.
Case ∀-I: Assume

Γ,γ2 :⪰ γ1 ⊢ B

Γ ⊢ ∀γ2 :⪰ γ1. B

Take v ≽ w and d ⪰v ι(ρ(γ1)). By Corollary D.1 we have
v ⊩ι(ρ) Γ, so letting ρ′ = ι(ρ) · [γ2 ↦→ d] we obtain v ⊩ρ′

Γ,γ2 :⪰ γ1. By the IH, v, ι(ρ(pos(Γ))) ⊩ρ′
B holds, which

implies w, ρ(pos(Γ)) ⊩ρ ∀γ2 :⪰ γ1. B.
Case ∀-E: Assume

Γ ⊢ ∀γ2 :⪰ γ1. B Γ ⊢ γ1 ⪯ γ

Γ ⊢ B[γ2 := γ]

By the IH, we have w, ρ(pos(Γ)) ⊩ρ ∀γ2 :⪰ γ1. B,
and from (2), ρ(γ1) ⪯w ρ(γ) holds. Since w ≼ w, we
obtain w, ρ(pos(Γ)) ⊩ρ · [γ2 ↦→ρ(γ)] B, and Lemma D.1 yields
w, ρ(pos(Γ)) ⊩ρ B[γ2 := γ].

Lemma D.2. The following rules are admissible:
1) Inversion of []-I:

Γ ⊢ [⪰γA]

Γ,🔓γ′:⪰γ ⊢ A

2) General weakening for top-level subderivations:

Γ,🔒! ,Γ′ ⊢ A

Γ,∆,🔒! ,Γ′ ⊢ A

Γ,🔒! ,Γ′ ⊢ γ1 ⊴ γ2

Γ,∆,🔒! ,Γ′ ⊢ γ1 ⊴ γ2

where ⊴ ∈ {⪯,⊑}.

Proof.
1) Using Theorem 2, we have

Γ ⊢ [⪰γA]

Γ,🔓γ′:⪰γ ,🔒pos(Γ) ⊢ [⪰γA]
[]-E

Γ,🔓γ′:⪰γ ⊢ A

2) By induction on derivation.

Lemma 11 (Truth lemma (On page 10)). Γ, γ ⊩c A iff
Γ,🔒! ⊢ [⪰γA].

Proof. By induction on the size of A, using Lemma D.2.
Case A ≡ p: By definition.
Case A ≡ B → C:

(⇐=): Suppose Γ,🔒! ⊢ [⪰γB → C]. Take ∆ ≽c Γ and
δ ⪰c

∆ γ satisfying ∆, δ ⊩ρc
Γ B. Since ρc∆ ↾DomC(Γ) = ρcΓ, we

have ∆, δ ⊩c B, and the IH yields ∆,🔒! ⊢ [⪰δB]. Then we
can derive

Γ,🔒! ⊢ [⪰γB → C]

∆,🔒! ⊢ [⪰γB → C]

∆,🔒! ,🔓δ′:⪰δ ⊢ B → C

∆,🔒! ⊢ [⪰δB]

∆,🔒! ,🔓δ′:⪰δ ⊢ B
→-E

∆,🔒! ,🔓δ′:⪰δ ⊢ C
[]-I

∆,🔒! ⊢ [⪰δC]

By the IH, ∆, δ ⊩c C holds, and so does ∆, δ ⊩ρc
Γ C, which

implies Γ, γ ⊩c B → C.
(=⇒): We proceed by contrapositive. Suppose Γ,🔒! ⊬

[⪰γ B → C]. Let ∆ ≡ Γ,🔒! ,🔓γ′:⪰γ ,x :δB. Then we must
have ∆,🔒! ⊬ [⪰δC]; otherwise we could derive

∆,🔒! ⊢ [⪰δC]
[]-E

Γ,🔒! ,🔓γ′:⪰γ ,x :δB ⊢ C
→-I

Γ,🔒! ,🔓γ′:⪰γ ⊢ B → C
[]-I

Γ,🔒! ⊢ [⪰γB → C]

a contradiction. By the IH, we have ∆, δ ⊮c C, and also
∆, δ ⊮ρc

Γ C as FC(C) ⊆ DomC(Γ). Applying a similar
argument to

Var
∆,🔒! ,🔓δ′:⪰δ ⊢ B

[]-I
∆,🔒! ⊢ [⪰δB]

yields ∆, δ ⊩ρc
Γ B. Since ∆ ≽c Γ and δ ⪰c

∆ γ, we see
Γ, γ ⊮c B → C.
Case A ≡ [⪰γ1 B]:

(⇐=): Suppose Γ,🔒! ⊢ [⪰γ [⪰γ1 B]]. Take ∆ ≽c Γ and
δ ⊒c

∆ γ satisfying δ ⪰c
∆ γ1. Then we can derive

Γ,🔒! ⊢ [⪰γ [⪰γ1 B]]

∆,🔒! ,🔓δ′:⪰δ,🔒γ ,🔒! ⊢ [⪰γ [⪰γ1 B]]
[]-E

∆,🔒! ,🔓δ′:⪰δ,🔒γ ⊢ [⪰γ1 B]
[]-E

∆,🔒! ,🔓δ′:⪰δ ⊢ B
[]-I

∆,🔒! ⊢ [⪰δB]

By the IH, ∆, δ ⊩c B holds, and so does ∆, δ ⊩ρc
Γ B, which

implies Γ, γ ⊩c [⪰γ1 B].
(=⇒): We proceed by contrapositive. Suppose Γ,🔒! ⊬

[⪰γ [⪰γ1 B]]. Let ∆ ≡ Γ,🔒! ,🔓γ′:⪰γ ,🔓δ:⪰γ1 . Then we must
have ∆,🔒! ⊬ [⪰δB]; otherwise we could derive

∆,🔒! ⊢ [⪰δB]
[]-E

Γ,🔒! ,🔓γ′:⪰γ ,🔓δ:⪰γ1 ⊢ B
[]-I

Γ,🔒! ,🔓γ′:⪰γ ⊢ [⪰γ1 B]
[]-I

Γ,🔒! ⊢ [⪰γ [⪰γ1 B]]

a contradiction. By the IH, we have ∆, δ ⊮c B and hence
∆, δ ⊮ρc

Γ B. As ∆ ≽c Γ and δ ⊒c
∆ γ with δ ⪰c

∆ γ1, we see
Γ, γ ⊮c [⪰γ1 B].



Case A ≡ ∀γ2 :⪰ γ1. B:
(⇐=): Suppose Γ,🔒! ⊢ [⪰γ ∀γ2 :⪰ γ1. B]. Take ∆ ≽c Γ

and δ ⪰c
∆ γ1. Then we can derive

Γ,🔒! ⊢ [⪰γ ∀γ2 :⪰ γ1. B]

∆,🔒! ⊢ [⪰γ ∀γ2 :⪰ γ1. B]

∆,🔒! ,🔓γ′:⪰γ ⊢ ∀γ2 :⪰ γ1. B∀-E
∆,🔒! ,🔓γ′:⪰γ ⊢ B[γ2 := δ]

[]-I
∆,🔒! ⊢ [⪰γB[γ2 := δ]]

By the IH, ∆, γ ⊩c B[γ2 := δ] holds, and so does
∆, γ ⊩ρc

Γ · [γ2 ↦→δ] B, which yields Γ, γ ⊩c ∀γ2 :⪰ γ1. B.
(=⇒): We proceed by contrapositive. Suppose Γ,🔒! ⊬

[⪰γ ∀γ2 :⪰ γ1. B]. Let ∆ ≡ Γ,🔒! ,🔓γ′:⪰γ ,γ2 :⪰ γ1. Then
we must have ∆,🔒! ⊬ ∀γ2 :⪰ γ1. B; otherwise we could
derive

∆,🔒! ⊢ [⪰γB]
[]-E

Γ,🔒! ,🔓γ′:⪰γ ,γ2 :⪰ γ1 ⊢ B
∀-I

Γ,🔒! ,🔓γ′:⪰γ ⊢ ∀γ2 :⪰ γ1. B
[]-I

Γ,🔒! ⊢ [⪰γ ∀γ2 :⪰ γ1. B]

a contradiction. By the IH, we have ∆, γ ⊮c B, and hence
∆, γ ⊮ρc

Γ · [γ2 ↦→γ2] B. Since ∆ ≽c Γ, we see Γ, γ ⊩c ∀γ2 :⪰
γ1. B.

Lemma 14 (On page 10). M+ is a CS4-model.

Proof. Most of the conditions are straightforward. The transi-
tivity of ⪯+ follows from that of ⪯u: if ⟨w, d⟩ ⪯+ ⟨v, e⟩ and
⟨v, e⟩ ⪯+ ⟨u, f⟩, then ⟨w, d⟩ ⪯+ ⟨u, f⟩:

e ι(e) f

d ι(d) ι(d)

⪯

⪯ ⪯

⪯
w

ι

ι

v

ι

ι

u≼

≼

Left-persistency follows from right-stability: if ⟨w, d⟩ R+

⟨w, e⟩ ⪯+ ⟨v, e′⟩, then ⟨w, d⟩ ⪯+ ⟨v, ι(d)⟩ R+ ⟨v, e′⟩:

e ι(e) e′

d ι(d)

⪯

⊑ ⊑

⊑

w

ι

ι

v
≼

Lemma 13 (On page 10). Mw, v ⊨CS4 |A|◻ iff
Mw

∗ , ∗, v ⊩[! ↦→w] A.

Proof. By induction on A. There are three cases:
Case A ≡ p:

Mw, v ⊨CS4 |p|◻ ⇐⇒ |p|◻ ∈ V (v)

⇐⇒ p ∈ V∗(v)

⇐⇒ Mw
∗ , ∗, v ⊩[! ↦→w] p

Case A ≡ B → C:

Mw, v ⊨CS4 |B → C|◻

⇐⇒ ∀u ⪰ v.

{
Mw, u ⊨CS4 |B|◻

=⇒ Mw, u ⊨CS4 |C|◻

⇐⇒ ∀u ⪰∗ v.

{
Mw

∗ , ∗, u ⊩[! ↦→w] B

=⇒ Mw
∗ , ∗, u ⊩[! ↦→w] C

(IH)

⇐⇒ Mw
∗ , ∗, v ⊩[! ↦→w] B → C

Case A ≡ [⪰!B]:

Mw, v ⊨CS4 |[⪰!B]|◻

⇐⇒ ∀v′ ⪰ v.∀u ∈ R(v′).
(
Mw, u ⊨CS4 |B|◻

)
⇐⇒ ∀u ⊒∗ v.

(
Mw, u ⊨CS4 |B|◻

)
⇐⇒ ∀u ⊒∗ v.

(
Mw∗, u ⊩[! ↦→w] B

)
(IH)

⇐⇒ Mw
∗ , v ⊩[! ↦→w] [⪰!B]

Lemma 15 (On page 10). M, w, d ⊩ρ A iff M+, ⟨w, d⟩ ⊨CS4

|A|◻.

Proof. By induction on A. There are three cases:
Case A ≡ p:

M, w, d ⊩ρ p ⇐⇒ ∀v ≽ w. ι(d) ∈ Vv(p)

⇐⇒ d ∈ Vw(p)

⇐⇒ ⟨w, d⟩ ∈ V+(p)

⇐⇒ M+, ⟨w, d⟩ ⊨CS4 |p|◻

Case A ≡ B → C:

M, w, d ⊩ρ B → C

⇐⇒ ∀v ≽ w. ∀e ⪰v ι(d).

{
M, v, e ⊩ι(ρ) B

=⇒ M, v, e ⊩ι(ρ) C

⇐⇒ ∀v ≽ w. ∀e ⪰v ι(d).

{
M+, ⟨v, e⟩ ⊨CS4 |B|◻

=⇒ M+, ⟨v, e⟩ ⊨CS4 |C|◻

(IH)

⇐⇒ ∀⟨v, e⟩ ⪰+ ⟨w, d⟩.

{
M+, ⟨v, e⟩ ⊨CS4 |B|◻

=⇒ M+, ⟨v, e⟩ ⊨CS4 |C|◻

⇐⇒ M+, ⟨w, d⟩ ⊨CS4 |B → C|◻

Case A ≡ [⪰!B]:

M, w, d ⊩ρ [⪰!B]

⇐⇒ ∀v ≽ w. ∀e ⊒v ι(d).
(
M, v, e ⊩ι(ρ) B

)
⇐⇒ ∀v ≽ w. ∀e ⊒v ι(d).

(
M+, ⟨v, e⟩ ⊨CS4 |B|◻

)
(IH)

⇐⇒ ∀⟨v, d′⟩ ⪰+ ⟨w, d⟩.
∀⟨v, e⟩ ∈ R+(⟨v, d′⟩).

(
M+, ⟨v, e⟩ ⊨CS4 |B|◻

)
(†)

⇐⇒ M+, ⟨w, d⟩ ⊨CS4 |[⪰!B]|◻



where the left-to-right direction of (†) follows from left-stability:

d′ e

d ι(d)

⊑

⪯

⊑v ι

u≼

E. Detailed Proofs of Section VII

Lemma E.1 (SN-closure).
1) If N ∈ SN and K[M [γ := γ′, x := N ]] ∈ SN, then

K[(λx :γA.M)N ] ∈ SN.
2) If K[M [γ2 := γ′]] ∈ SN, then K[~{γ3 ‵{γ2:⪰γ1 M}}] ∈

SN.
3) If K[M [γ2 := γ3]] ∈ SN, then K[(λγ2 :⪰ γ1.M)γ3] ∈

SN.

Proof. By contrapositive.

Lemma E.2 (Reducibility-closure). The following rules are
admissible:

∀∆ ≽ Γ.

(
∆ ⊢ N ∈ E⟦A⟧ =⇒
∆ ⊢ M [γ := pos(∆),x := N ] ∈ E⟦B⟧

)
E-→

Γ ⊢ λx :γA.M ∈ E⟦A→B⟧

∀
(
∆,🔒δ

)
≽ Γ.

∆ ⊢ δ ⊑ pos(∆)

& ∆ ⊢ γ1 ⪯ pos(∆) =⇒
∆ ⊢ M [γ2 := pos(∆)] ∈ E⟦A⟧


E-[]

Γ ⊢ ‵{γ2:⪰γ1 M} ∈ E⟦[⪰γ1 A]⟧

∀∆ ≽ Γ.

(
∆ ⊢ γ1 ⪯ γ =⇒
∆ ⊢ M [γ2 := γ] ∈ E⟦A[γ2 := γ]⟧

)
E-∀

Γ ⊢ λγ2 :⪰ γ1.M ∈ E⟦∀γ2 :⪰ γ1. A⟧

Proof. By simply checking the condition of E-blur.
Proof of E-→: Suppose ∆ ≽ Γ. Take ∆ ⊢ K ∈ K⟦A→B⟧

to show K[λx :γA.M ] ∈ SN. For the last rule of the derivation
of K, there are two possibilities:

Case K-id: We may assume without loss of generality that
x /∈ DomV(∆) and γ /∈ DomC(∆). Let ∆′ ≡ ∆,x :γ A.
Then we have Γ ≼ ∆′ and ∆′ ⊢ x ∈ E⟦A⟧. By assumption, we
obtain ∆′ ⊢ M [γ := γ,x := x] ≡ M ∈ E⟦B⟧, and Lemma 16
yields M ∈ SN. Thus, λx :γA.M ∈ SN.

Case K-→: Then we have K ≡ K ′[[−]N ] for some ∆ ⊢
N ∈ E⟦A⟧ and ∆ ⊢ K ′ ∈ K⟦B⟧. By assumption we have
∆ ⊢ M [γ := pos(∆),x := N ] ∈ E⟦B⟧, and hence K ′[M [γ :=
pos(∆),x := N ]] ∈ SN. By Lemma E.1 we see K ′[(λx :γA.
M)N ] ∈ SN.

Proof of E-[]: Suppose
(
∆,🔒δ

)
≽ Γ. Take ∆,🔒δ ⊢ K ∈

K⟦[⪰γ1 A]⟧ to show K[‵{γ2:⪰γ1 M}] ∈ SN. For the last rule
of the derivation of K, there are two possibilities:

Case K-id: We may assume without loss of generality that
γ2 /∈ DomC(∆). Let ∆′ ≡ ∆,🔒δ,🔓γ2:⪰γ1 . Then we have
Γ ≼

(
∆′,🔒δ

)
with ∆′ ⊢ δ ⊑ γ2 and ∆′ ⊢ γ1 ⪯ γ2. By

assumption we have ∆′ ⊢ M [γ2 := γ2] ≡ M ∈ E⟦A⟧, and
Lemma 16 yields M ∈ SN. Thus, ‵{γ2:⪰γ1 M} ∈ SN.
Case K-[]: Then we have K ≡ K ′[~{δ [−]}] for some ∆ ⊢
K ∈ K⟦A⟧ with ∆ ⊢ δ ⊑ pos(∆) and ∆ ⊢ γ1 ⪯ pos(∆).
By assumption we have ∆ ⊢ M [γ2 := pos(∆)] ∈ E⟦A⟧, and
hence K ′[M [γ2 := pos(∆)]] ∈ SN. By Lemma E.1 we see
K ′[~{δ ‵{γ2:⪰γ1 M}}] ∈ SN.

Proof of E-∀: Suppose ∆ ≽ Γ. Take ∆ ⊢ K ∈ K⟦∀γ2 :⪰
γ1. A⟧ to show K[λγ2 :⪰ γ1.M ] ∈ SN. For the last rule of
the derivation of K, there are two possibilities:
Case K-id: We may assume without loss of generality that
γ2 /∈ DomC(∆). Let ∆′ ≡ ∆,γ2 :⪰ γ1. Then we have
Γ ≼ ∆′ with ∆′ ⊢ γ1 ⪯ γ2. By assumption we obtain ∆′ ⊢
M [γ2 := γ2] ≡ M ∈ E⟦A⟧, and Lemma 16 yields M ∈ SN.
Thus, λγ2 :⪰ γ1.M ∈ SN.
Case K-∀: Then we have K ≡ K ′[[−]γ] for some ∆ ⊢ K ′ ∈
K⟦A[γ2 := γ]⟧ with ∆ ⊢ γ1 ⪯ γ. By assumption we obtain
∆ ⊢ M [γ2 := γ] ∈ E⟦A[γ2 := γ]⟧, and hence K ′[M [γ2 :=
γ]] ∈ SN. By Lemma E.1 we see K ′[(∀γ2 :⪰ γ1. M)γ] ∈
SN.

Lemma E.3 (Monotonicity w.r.t. ≼). Suppose Γ ≼ ∆. If
Γ ⊢ M ∈ E⟦A⟧, then ∆ ⊢ M ∈ E⟦A⟧.

Proof. If E-id is applied, then it can also be applied to x in ∆ as
∆ ≽ Γ; otherwise, take ∆′ ≽ ∆ and ∆′ ⊢ K ∈ K⟦A⟧. Then we
have Γ ≼ ∆ ≼ ∆′, and thus K[M ] ∈ SN as Γ ⊢ M ∈ E⟦A⟧,
which implies ∆ ⊢ M ∈ E⟦A⟧.

Lemma E.4 (Monotonicity regarding C⟦Γ⟧). Suppose ∆ ⊢ σ ∈
C⟦Γ⟧.

1) It holds that ∆ ⊢ pos(Γ)σ ⪯ pos(∆).
2) If Γ ⊢ γ1 ⪯ γ2, then ∆ ⊢ γ1 σ ⪯ γ2 σ.
3) If Γ ⊢ γ1 ⊑ γ2, then ∆ ⊢ γ1 σ ⊑ γ2 σ.

Proof. By induction on the derivation of ∆ ⊢ σ ∈ C⟦Γ⟧.

Lemma E.5. Suppose ...
∆ ⊢ σ ∈ C⟦Γ⟧

...
∆′ ⊢ σ · σ′ ∈ C⟦Γ,Γ′⟧

If Γ ≼ Γ,Γ′, then ∆′ ≼ ∆.

Γ,Γ′ ∆′

Γ ∆

σ · σ′

≼
σ

≼

Proof. Check all conditions for ∆ ≼ ∆′.
To show ∆′ ⊢ pos(∆)⪯pos(∆′), we proceed by induction

on derivation. If either C-weak or C-∀ is applied, then it follows
from the IH; otherwise, we have pos(Γ,Γ′) (σ · σ′) ≡ pos(∆′).
By Lemma E.4, it holds that



• ∆′ ⊢ pos(Γ)σ ⪯ pos(Γ,Γ′) and
• ∆′ ⊢ pos(Γ,Γ′)σ ⪯ pos(∆′),

which implies ∆′ ⊢ pos(∆)⪯pos(∆′).
The other conditions are shown by straightforward induction.

Lemma 17 (Fundamental property (On page 11)). Suppose
Γ ⊢ M : A. If ∆ ⊢ σ ∈ C⟦Γ⟧, then ∆ ⊢ M σ ∈ E⟦Aσ⟧.

Proof. By induction on the derivation of Γ ⊢ M : A. Taking
∆ ⊢ σ ∈ C⟦Γ⟧, We analyze the last rule of the derivation:

Case Var: If x /∈ DomV(σ), then it follows from Lemma E.3;
otherwise, it follows from Lemma E.5.

Case →-I: Assume

Γ,x :γB ⊢ N : C γ /∈ FC(C)

Γ ⊢ λx :γB.N : B → C

Take ∆′ ≽ ∆ with ∆′ ⊢ P ∈ E⟦B σ⟧. Then we have

∆ ⊢ σ ∈ C⟦Γ⟧
C-weak

∆′ ⊢ σ ∈ C⟦Γ⟧ ∆′ ⊢ P ∈ E⟦B σ⟧
C-→

∆′ ⊢ σ · [γ := pos(∆′),x := P ] ∈ C⟦Γ,x :γB⟧

By the IH, we have

∆′ ⊢ N (σ · [γ := pos(∆′),x := P ])

≡ (N σ)[γ := pos(∆′),x := P ] ∈ E⟦C σ⟧,

and by E-→, we see

∆ ⊢ λx :γB σ.N σ

≡ (λx :γB.N)σ ∈ E⟦(B → C)σ⟧.

Case →-E: Assume

Γ ⊢ N : B → C Γ ⊢ P : B

Γ ⊢ NP : C

Take ∆′ ≽ ∆ with ∆ ⊢ K ∈ K⟦C σ⟧. Then we have

∆ ⊢ σ ∈ C⟦Γ⟧
C-weak

∆′ ⊢ σ ∈ C⟦Γ⟧ Γ ⊢ P : B
IH

∆′ ⊢ P σ ∈ E⟦B σ⟧

and
∆′ ⊢ K ∈ K⟦C σ⟧ ∆′ ⊢ P σ ∈ E⟦B σ⟧

K-→
∆′ ⊢ K[[−](P σ)] ∈ E⟦(B → C)σ⟧

Applying the IH to N yields ∆ ⊢ N σ ∈ E⟦(B → C)σ⟧, so
that K[(NP )σ] ∈ SN, implying ∆ ⊢ (NP )σ ∈ E⟦C σ⟧.

Case []-I: Assume

Γ,🔓γ2:⪰γ1 ⊢ N : B γ2 /∈ FC(B)

Γ ⊢ ‵{γ2:⪰γ1 N} : [⪰γ1 B]

Take ∆′,🔒δ ≽ ∆ with ∆′ ⊢ δ ⊑ pos(∆′) and ∆′ ⊢ γ1 σ ⪯
pos(∆′). Then we have

∆,🔒δ ⊢ σ ∈ C⟦Γ⟧
C-weak

∆′,🔒δ ⊢ σ ∈ C⟦Γ⟧ ∆′ ⊢ γ1 σ ⪯ pos(∆′)
C-[]

∆′ ⊢ σ · [γ2 := pos(∆′)] ∈ C⟦Γ,🔓γ2:⪰γ1⟧

By the IH, we have

∆′ ⊢ N (σ · [γ2 := pos(∆′)])

≡ (N σ)[γ2 := pos(∆′)] ∈ E⟦B σ⟧,

and by E-[], we see

∆ ⊢ ‵{γ2:⪰γ1 σN σ}
≡ ‵{γ2:⪰γ1 N}σ ∈ E⟦[⪰γ1 B]σ⟧.

Case []-E: Assume

Γ,🔒γ ⊢ N : [⪰γ1 B] Γ ⊢ γ1 ⪯ pos(Γ)

Γ ⊢ ~{γN} : B

Take ∆′ ≽ ∆ with ∆′ ⊢ K ∈ K⟦B σ⟧. Using Lemma E.4 we
have

Γ ⊢ γ ⊑ pos(Γ)

∆′ ⊢ γ σ ⊑ pos(Γ)σ ∆′ ⊢ pos(Γ)σ ⪯ pos(∆′)

∆′ ⊢ γ σ ⊑ pos(∆′)

Γ ⊢ γ1 ⪯ pos(Γ)

∆′ ⊢ γ σ ⊑ pos(Γ)σ ∆′ ⊢ pos(Γ)σ ⪯ pos(∆′)

∆′ ⊢ γ1 σ ⪯ pos(∆′)

and ∆′,🔒γ σ ⊢ K[~{γ σ [−]}] ∈ K⟦[⪰γ1 B]σ⟧ by K-[]. In
addition, we have

∆ ⊢ σ ∈ C⟦Γ⟧
C-weak

∆′ ⊢ σ ∈ C⟦Γ⟧
C-🔒

∆′,🔒γ σ ⊢ σ ∈ C⟦Γ,🔒γ⟧ Γ,🔒γ ⊢ N : [⪰γ1 B]
IH

∆′,🔒γ σ ⊢ N σ ∈ E⟦[⪰γ1 B]σ⟧

and therefore K[~{γ σN σ}] ≡ K[(~{γN})σ] ∈ SN, implying
∆ ⊢ (~{γN})σ ∈ E⟦B σ⟧.
Case ∀-I: Assume

Γ,γ2 :⪰ γ1 ⊢ N : B

Γ ⊢ λγ2 :⪰ γ1. N : ∀γ2 :⪰ γ1. B

Take ∆′ ≽ ∆ with ∆′ ⊢ γ1 σ ⪯ γ. Then we have

∆ ⊢ σ ∈ C⟦Γ⟧
C-weak

∆′ ⊢ σ ∈ C⟦Γ⟧ ∆′ ⊢ γ1 σ ⪯ γ
C-∀

∆′ ⊢ σ · [γ2 := γ] ∈ C⟦Γ,γ2 :⪰ γ1⟧

By the IH, we have ∆′ ⊢ (N σ)[γ2 := γ] ∈ E⟦B σ⟧, and by
E-∀ we see

∆ ⊢ λγ2 :⪰ γ1 σ.N σ

≡ (λγ2 :⪰ γ1. N)σ ∈ E⟦(∀γ2 :⪰ γ1. B)σ⟧.

Case ∀-E: Assume

Γ ⊢ N : ∀γ2 :⪰ γ1. B Γ ⊢ γ1 ⪯ γ

Γ ⊢ Nγ : B[γ2 := γ]

Take ∆′ ≽ ∆ with ∆ ⊢ K ∈ K⟦(B[γ2 := γ])σ⟧. Using
Lemma E.4 we have

Γ ⊢ γ1 ⪯ γ

∆′ ⊢ γ1 σ ⪯ γ σ ∆′ ⊢ K ∈ K⟦(B[γ2 := γ])σ⟧
C-∀

∆′ ⊢ K[[−](γ σ)] ∈ C⟦(∀γ2 :⪰ γ1. B)σ⟧



Applying the IH to N yields ∆′ ⊢ N σ ∈ E⟦(∀γ2 :⪰ γ1. B)σ⟧,
so that K[(Nγ)σ] ∈ SN, implying ∆ ⊢ (Nγ)σ ∈ E⟦(B[γ2 :=
γ])σ⟧.

Theorem 12 (Confluence (On page 11)). The β-reduction is
confluent for well-typed terms.

Proof. From Newman’s lemma [2] and Theorem 11, we need
only to prove weak confluence. It is done by induction on β,
which is straightforward because there are no critical pairs.

Lemma E.6. Suppose Γ ⊢ M : A. If M is β-normal and
neutral, then there exists some x :γ B ∈ Γ such that A is a
subformula of B.

Proof. By induction on derivation. For the last rule of the
derivation, there are four possibilities:

Case Var: Obvious.

Case →-E: Assume

Γ ⊢ N : B → C Γ ⊢ P : B

Γ ⊢ NP : C

Since NP is β-normal, N is β-normal and neutral. By the IH
there exists some x :δD ∈ Γ such that B→C is a subformula
of D. Then C is also a subformula of D, hence x :δD meets
the condition.

Case []-E: Assume

Γ,🔒γ ⊢ N : [⪰γ1 B] Γ ⊢ γ1 ⪯ pos(Γ)

Γ ⊢ ~{γN} : B

Since ~{γN} is β-normal, N is β-normal and neutral. By the
IH there exists some x :δD ∈ Γ,🔒γ such that [⪰γ1 B] is a
subformula of D. Then B is also a subformula of D, hence
x :δD meets the condition.

Case ∀-E: Assume

Γ ⊢ N : ∀γ2 :⪰ γ1. B Γ ⊢ γ1 ⪯ γ

Γ ⊢ Nγ : B[γ2 := γ]

Since Nγ is β-normal, N is β-normal and neutral. By the
IH there exists some x :δD ∈ Γ such that ∀γ2 :⪰ γ1. B is
a subformula of D. Then B[γ2 := γ] is also a subformula
of D, hence x :δD meets the condition. Notice that classifier
renaming [γ2 := γ] here is allowed in the definition of
subformula.

Theorem 13 (Canonicity (On page 11)). If a term is well-
typed, closed regarding term variable, and β-normal, then it is
canonical.

Proof. If not canonical, by Lemma E.6 it contains a free
variable, which contradicts the assumption.

Theorem 14 (Subformula property (On page 11)). Suppose
Γ ⊢ M : A. If M is β-normal, then any subterm of M satisfies
at least one of the following:

a) Its type is a subformula of A;
b) Its type is a subformula of B for some x :γB ∈ Γ.

Proof. By induction on derivation. Since the term M itself
clearly satisfies (a), it suffices to check condition for proper
subterms.
Case Var: No proper subterm exists.
Case →-I: Assume

Γ,y :γB ⊢ N : C γ /∈ FC(C)

Γ ⊢ λy :γB.N : B → C

Since all proper subterms of λy :γB.N are a subterm of N ,
by the IH there are three possibilities for their types:
Subcase 1: A subformula of C. Then it is also a subformula of
B → C, so (a) holds.
Subcase 2: A subformula of B. This is also the case (a).
Subcase 3: A subformula of D for some x :δD ∈ Γ. Yields
(b).
Case →-E: Assume

Γ ⊢ N : B → C Γ ⊢ P : B

Γ ⊢ NP : C

Then N is β-normal and neutral, so applying Lemma E.6 to
N , we see that there exists some x :δD ∈ Γ such that B →C
is a subformula of D. Together with the IH, we see that (b)
holds for any proper subterm of NP .
Case []-I: Follows from the IH.
Case []-E: Similar to the case →-E.
Case ∀-I: Follows from the IH.
Case ∀-E: Similar to the case →-E.
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