
安全なコード⽣成を提供する
プログラミング⾔語の理論について Yuito Murase

Extensible Programming Languages

On Foundations of Safe Code Genration Graduate School of Informatics
Kyoto University

Type-Safe Code Generation

Logical Foundation of Code Generation

I work on theoritical perspectives of code generation.
My ambition is to establish design principles of
programming languages that suit for development of platforms.

Based upon

1.

2.

3.

Syntactic ExtensionsDomain-Specific Lang.
It would ideal if we can develop a tailor-made
programming language to describe domain
logic for each platform.

Static safety of exts.

Big Data
Platform

PL with built-in query lang

IoT
Platform

PL to describe business logic
across multiple devices

let num_workers(age_max) =
 select count()
 from residence_info_db
 where has_job = true
 and age <= age_max

@sensor { send ch getTemp }
@controller {
 receive ch -> x
 store(db, x)
}

Our final goal is to design a extensible language
that users can provide domain-specific syntactic
extensions for each platform (a.k.a, macros)

Core Lang Query Lang Ext.

We want to statically detect bugs in progams,
but it is not straightforward in those programs
written in an extended langauge.

Extension
developer

let num_workers(age_max) =
 select count()
 from residence_tbl
 where has_job = true
 and age <= age_max

let num_workers(age_max) =
 buildQuery(
 "SELECT count() ...",
 residence_tbl,
 age_max)
 |> submit(DB_CONNECTION)
 |> parseInt()

Compile

Motivation: Approach: Issue to resolve:

let num_workers(age_max:int):int =
 select count()
 from residence_tbl
 where has_job = age_max

Error: expected boolean,
but got integer

Type System for Flexible Code Gen.
Ongoing Project (joint work with Atushi Igarashi):

Novel Modal Logic for Safe
yet Flexible Code Genneration

Ongoing Project (joint work with Akinori Maniwa):

Multi-Stage Programming
Background:

... provides langauge-level support for generating code, which
makes development of syntactic extensions much more efficient

let x: int code = `{ 10 } in
let y: int code = `{ 20 } in
`{ print (~x + ~y) }

print (10 + 20)

Code Generator Generated
Program

let x: int code = `{ "hello" } in
let y: int code = `{ 20 } in
`{ print (~x + ~y) }

Type system can find errors of generated code without
generating it (which should be applicable to the goal of 1)

Error: expected integer,
but got string

We work on a novel type system λ∀γ for code generation that ensure
safety for code generation with more flexible operations.

let x:int@g = 10 in
let y:int g code = `{@g x + 1 } in
run y

scope information captures
which variables can be used

code type captures scope information

First-place award winner@APLAS 2024 Student research competition

Correspondance between
Modal Logic and Code Generation

Background:

It is widely known that there is a correspondance between logic and
programming languages, called the Curry-Howard correspondance.
And, code generation is considered to correspond to modal logic.

Logic Programming
Language

proofs programs
propositions (subject of proofs) types

implication (A → B) function type (A → B)
modality

(□A, necessarily A) code type (A code)

We work on novel extension of modal logic, which we call
Bounded Modal Type Theory. We utilize BMTT to establish
a design printicple of λ∀γ in 2.

B
ottom

-u
p D

esign

Based upon

Bounded
Modal
Type
Theory

 λ∀γ
(from 2)

Justification
from
Logical
Perspective

Justification
from
Programming
Perspective

Feedback

Feedback

