N

e = FE/RZIRIETS
JOU5 U EEDIBR/ICOWVT

On Foundations of Safe Code Genration

!V'A

2 KUSP

Kyoto University School of Platforms

Yuito Murase

Graduate School of Informatics
Kyoto University

I work on theoritical perspectives of code generation.
My ambition is to establish design principles of
programming lanquages that suit for development of platforms.

1. Extensible Programming Languages

Motivation:
Domain-Specific Lang.
It would ideal if we can develop a tailor-made

programming language to describe domain
logic for each platform.

let nhum_workers(age_max) =
select count()
from residence_info_db
where has_job = true
and age <= age_max

BIG DATA

o1
|mn|oom
Cigio 00110101
p [1101101001010
01INC0110191010011010101001
19 I‘O|QII00|°|°I°H°°|DIO

T nle 0101100101010110010

4 1] 1

ﬁ 10)

D1oiorois 0110 0101101104
0110110 10101001
1001011 |?low

101011 15011
‘o

PL with built-in query lang

@sensor { send ch getTemp }

@-iwn,’*% @controller { let nym_workers(age_max) =
IoT < —O receive ch -> x buii LdQuery (

t_.; ¢ E ‘ store(db, x) "SELECT count() ..."
Platfor - "/\ ﬂ% ! ’ residence_tbl,

age_max)
PL to describe business logic
across multiple devices

7. Type-Safe Code Generation

Background:
Multi-Stage Programming

... provides langauge-level support for generating code, which
makes development of syntactic extensions much more efficient

Generated
Program

Code Generator

let x: int code {10 } in
let y: int code {20 } in
{ print (~x + ~y) }

s

print (10 + 20)

Type system can find errors of generated code without
generating it (which should be applicable to the goal of 1)

let x: int code = { "hello"
let y: 1int code { 20 } in
{ print (~x + ~y) }

Error: expected integer,
but got string

3. Logical Foundation of Code Generation

Background:
Correspondance between

Modal Logic and Code Generation

It is widely known that there is a correspondance between logic and

programming languagqes, called the Curry-Howard correspondance.

And, code generation is considered to correspond to modal logic.

: Programming
Logic 0 Language
proofs programs
propositions (subject of proofs) types

implication (A — B)

modality
(DA, necessarily A)

function type (A — B)
code type (A code)

Approach:
Syntactic Extensions

Our final goal is to design a extensible language
that users can provide domain-specific syntactic
extensions for each platform (a.k.a, macros)

Core Lang

|> submit(DB_CONNECTION) Compile
| > parseInt()

Issue to resolve:

Static safety of exts.

We want to statically detect bugs in progams,
but it is not straightforward in those programs
written in an extended langauge.

m Extension

|”) developer

—

Query Lang Ext.

let num_workers(age_max:int):int =
select count()
from residence_tbl
where has_job = _a

Error: expected boolean,
but got integer

BIG DATA

let num_workers(age_max) =
select count()
from residence_tbl
where has_job = true
and age <= age_max

S—

Based upon

Ongoing Project (joint work with Atushi Igarashi):

Type System for Flexible Code Gen.

We work on a novel type system Avy for code generation that ensure
safety for code generation with more flexible operations.
scope information captures

W which variables can be used

let x:int@g = 10 In
let y:int g code =
run y

‘{@g x + 1 } in
R code type captures scope information

ard
@APLAS 2034 ' ''"ner

Student research COmpetition

Based upon

=c
-
=
=)
&
=
-
=
~

Ongoing Project (joint work with Akinori Maniwa):

Novel Modal Logic for Safe
yet Flexible Code Genneration

We work on novel extension of modal logic, which we call
Bounded Modal Type Theory. We utilize BMTT to establish
a design printicple of Avy in 2.

Feedback

A

USIsa

Bounded
Modal

Type
Theory

Justification
from
Programming
Perspective

Justification
from
Logical
Perspective

Feedback

